![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashunif | Structured version Visualization version GIF version |
Description: The cardinality of a disjoint finite union of finite sets. Cf. hashuni 15769. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
hashiunf.1 | ⊢ Ⅎ𝑥𝜑 |
hashiunf.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
hashunif.4 | ⊢ (𝜑 → 𝐴 ⊆ Fin) |
hashunif.5 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) |
Ref | Expression |
---|---|
hashunif | ⊢ (𝜑 → (♯‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5051 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | fveq2i 6884 | . 2 ⊢ (♯‘∪ 𝐴) = (♯‘∪ 𝑥 ∈ 𝐴 𝑥) |
3 | hashiunf.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
4 | hashunif.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ Fin) | |
5 | 4 | sselda 3974 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ Fin) |
6 | hashunif.5 | . . . . 5 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) | |
7 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
8 | 7 | cbvdisjv 5114 | . . . . 5 ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 ↔ Disj 𝑦 ∈ 𝐴 𝑦) |
9 | 6, 8 | sylib 217 | . . . 4 ⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) |
10 | 3, 5, 9 | hashiun 15765 | . . 3 ⊢ (𝜑 → (♯‘∪ 𝑦 ∈ 𝐴 𝑦) = Σ𝑦 ∈ 𝐴 (♯‘𝑦)) |
11 | 7 | cbviunv 5033 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑦 ∈ 𝐴 𝑦 |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑦 ∈ 𝐴 𝑦) |
13 | 12 | fveq2d 6885 | . . 3 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝑥) = (♯‘∪ 𝑦 ∈ 𝐴 𝑦)) |
14 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) | |
15 | 14 | cbvsumv 15639 | . . . 4 ⊢ Σ𝑥 ∈ 𝐴 (♯‘𝑥) = Σ𝑦 ∈ 𝐴 (♯‘𝑦) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (♯‘𝑥) = Σ𝑦 ∈ 𝐴 (♯‘𝑦)) |
17 | 10, 13, 16 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝑥) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
18 | 2, 17 | eqtrid 2776 | 1 ⊢ (𝜑 → (♯‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ⊆ wss 3940 ∪ cuni 4899 ∪ ciun 4987 Disj wdisj 5103 ‘cfv 6533 Fincfn 8935 ♯chash 14287 Σcsu 15629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-disj 5104 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 |
This theorem is referenced by: hasheuni 33572 |
Copyright terms: Public domain | W3C validator |