Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasure Structured version   Visualization version   GIF version

Theorem psmeasure 46453
Description: Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasure.x (𝜑𝑋𝑉)
psmeasure.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasure.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
Assertion
Ref Expression
psmeasure (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem psmeasure
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥 ∈ 𝒫 𝑋)
2 psmeasure.h . . . . . . . . 9 (𝜑𝐻:𝑋⟶(0[,]+∞))
32adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝐻:𝑋⟶(0[,]+∞))
41elpwid 4562 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 fssres 6694 . . . . . . . 8 ((𝐻:𝑋⟶(0[,]+∞) ∧ 𝑥𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
63, 4, 5syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
71, 6sge0cl 46363 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝑋) → (Σ^‘(𝐻𝑥)) ∈ (0[,]+∞))
8 psmeasure.m . . . . . 6 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
97, 8fmptd 7052 . . . . 5 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
108, 7dmmptd 6631 . . . . . 6 (𝜑 → dom 𝑀 = 𝒫 𝑋)
1110feq2d 6640 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝒫 𝑋⟶(0[,]+∞)))
129, 11mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
13 psmeasure.x . . . . . 6 (𝜑𝑋𝑉)
14 pwsal 46297 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
1513, 14syl 17 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ SAlg)
1610, 15eqeltrd 2828 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
1712, 16jca 511 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
18 reseq2 5929 . . . . . 6 (𝑥 = ∅ → (𝐻𝑥) = (𝐻 ↾ ∅))
1918fveq2d 6830 . . . . 5 (𝑥 = ∅ → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 ↾ ∅)))
20 0elpw 5298 . . . . . 6 ∅ ∈ 𝒫 𝑋
2120a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝑋)
22 fvexd 6841 . . . . 5 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) ∈ V)
238, 19, 21, 22fvmptd3 6957 . . . 4 (𝜑 → (𝑀‘∅) = (Σ^‘(𝐻 ↾ ∅)))
24 res0 5938 . . . . . . 7 (𝐻 ↾ ∅) = ∅
2524fveq2i 6829 . . . . . 6 ^‘(𝐻 ↾ ∅)) = (Σ^‘∅)
26 sge00 46358 . . . . . 6 ^‘∅) = 0
2725, 26eqtri 2752 . . . . 5 ^‘(𝐻 ↾ ∅)) = 0
2827a1i 11 . . . 4 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) = 0)
2923, 28eqtrd 2764 . . 3 (𝜑 → (𝑀‘∅) = 0)
30 simpl 482 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝜑)
31 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 dom 𝑀)
3210pweqd 4570 . . . . . . . 8 (𝜑 → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3332adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3431, 33eleqtrd 2830 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 𝒫 𝑋)
35 elpwi 4560 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
3634, 35syl 17 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ⊆ 𝒫 𝑋)
3713ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑋𝑉)
382ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝐻:𝑋⟶(0[,]+∞))
399ad2antrr 726 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑀:𝒫 𝑋⟶(0[,]+∞))
40 simplr 768 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑦 ⊆ 𝒫 𝑋)
41 id 22 . . . . . . . . . . 11 (𝑤 = 𝑧𝑤 = 𝑧)
4241cbvdisjv 5073 . . . . . . . . . 10 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4342biimpi 216 . . . . . . . . 9 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4443adantl 481 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → Disj 𝑧𝑦 𝑧)
4537, 38, 8, 39, 40, 44psmeasurelem 46452 . . . . . . 7 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4645adantrl 716 . . . . . 6 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ (𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤)) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4746ex 412 . . . . 5 ((𝜑𝑦 ⊆ 𝒫 𝑋) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
4830, 36, 47syl2anc 584 . . . 4 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
4948ralrimiva 3121 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
5017, 29, 49jca31 514 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
51 ismea 46433 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
5250, 51sylibr 234 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861  Disj wdisj 5062   class class class wbr 5095  cmpt 5176  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  ωcom 7806  cdom 8877  0cc0 11028  +∞cpnf 11165  [,]cicc 13269  SAlgcsalg 46290  Σ^csumge0 46344  Meascmea 46431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-salg 46291  df-sumge0 46345  df-mea 46432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator