Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasure Structured version   Visualization version   GIF version

Theorem psmeasure 43980
Description: Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasure.x (𝜑𝑋𝑉)
psmeasure.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasure.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
Assertion
Ref Expression
psmeasure (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem psmeasure
Dummy variables 𝑧 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥 ∈ 𝒫 𝑋)
2 psmeasure.h . . . . . . . . 9 (𝜑𝐻:𝑋⟶(0[,]+∞))
32adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝐻:𝑋⟶(0[,]+∞))
41elpwid 4550 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
5 fssres 6638 . . . . . . . 8 ((𝐻:𝑋⟶(0[,]+∞) ∧ 𝑥𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
63, 4, 5syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 𝑋) → (𝐻𝑥):𝑥⟶(0[,]+∞))
71, 6sge0cl 43890 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝑋) → (Σ^‘(𝐻𝑥)) ∈ (0[,]+∞))
8 psmeasure.m . . . . . 6 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
97, 8fmptd 6985 . . . . 5 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
108, 7dmmptd 6576 . . . . . 6 (𝜑 → dom 𝑀 = 𝒫 𝑋)
1110feq2d 6584 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝒫 𝑋⟶(0[,]+∞)))
129, 11mpbird 256 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
13 psmeasure.x . . . . . 6 (𝜑𝑋𝑉)
14 pwsal 43827 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
1513, 14syl 17 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ SAlg)
1610, 15eqeltrd 2841 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
1712, 16jca 512 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
18 reseq2 5885 . . . . . 6 (𝑥 = ∅ → (𝐻𝑥) = (𝐻 ↾ ∅))
1918fveq2d 6775 . . . . 5 (𝑥 = ∅ → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 ↾ ∅)))
20 0elpw 5282 . . . . . 6 ∅ ∈ 𝒫 𝑋
2120a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝑋)
22 fvexd 6786 . . . . 5 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) ∈ V)
238, 19, 21, 22fvmptd3 6895 . . . 4 (𝜑 → (𝑀‘∅) = (Σ^‘(𝐻 ↾ ∅)))
24 res0 5894 . . . . . . 7 (𝐻 ↾ ∅) = ∅
2524fveq2i 6774 . . . . . 6 ^‘(𝐻 ↾ ∅)) = (Σ^‘∅)
26 sge00 43885 . . . . . 6 ^‘∅) = 0
2725, 26eqtri 2768 . . . . 5 ^‘(𝐻 ↾ ∅)) = 0
2827a1i 11 . . . 4 (𝜑 → (Σ^‘(𝐻 ↾ ∅)) = 0)
2923, 28eqtrd 2780 . . 3 (𝜑 → (𝑀‘∅) = 0)
30 simpl 483 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝜑)
31 simpr 485 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 dom 𝑀)
3210pweqd 4558 . . . . . . . 8 (𝜑 → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3332adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋)
3431, 33eleqtrd 2843 . . . . . 6 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ∈ 𝒫 𝒫 𝑋)
35 elpwi 4548 . . . . . 6 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
3634, 35syl 17 . . . . 5 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → 𝑦 ⊆ 𝒫 𝑋)
3713ad2antrr 723 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑋𝑉)
382ad2antrr 723 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝐻:𝑋⟶(0[,]+∞))
399ad2antrr 723 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑀:𝒫 𝑋⟶(0[,]+∞))
40 simplr 766 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → 𝑦 ⊆ 𝒫 𝑋)
41 id 22 . . . . . . . . . . 11 (𝑤 = 𝑧𝑤 = 𝑧)
4241cbvdisjv 5055 . . . . . . . . . 10 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4342biimpi 215 . . . . . . . . 9 (Disj 𝑤𝑦 𝑤Disj 𝑧𝑦 𝑧)
4443adantl 482 . . . . . . . 8 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → Disj 𝑧𝑦 𝑧)
4537, 38, 8, 39, 40, 44psmeasurelem 43979 . . . . . . 7 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4645adantrl 713 . . . . . 6 (((𝜑𝑦 ⊆ 𝒫 𝑋) ∧ (𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤)) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))
4746ex 413 . . . . 5 ((𝜑𝑦 ⊆ 𝒫 𝑋) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
4830, 36, 47syl2anc 584 . . . 4 ((𝜑𝑦 ∈ 𝒫 dom 𝑀) → ((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
4948ralrimiva 3110 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
5017, 29, 49jca31 515 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
51 ismea 43960 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
5250, 51sylibr 233 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892  c0 4262  𝒫 cpw 4539   cuni 4845  Disj wdisj 5044   class class class wbr 5079  cmpt 5162  dom cdm 5590  cres 5592  wf 6428  cfv 6432  (class class class)co 7271  ωcom 7706  cdom 8714  0cc0 10872  +∞cpnf 11007  [,]cicc 13081  SAlgcsalg 43820  Σ^csumge0 43871  Meascmea 43958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-oi 9247  df-card 9698  df-acn 9701  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-xadd 12848  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-salg 43821  df-sumge0 43872  df-mea 43959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator