Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninclem Structured version   Visualization version   GIF version

Theorem meaiuninclem 46509
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiuninclem.m (𝜑𝑀 ∈ Meas)
meaiuninclem.n (𝜑𝑁 ∈ ℤ)
meaiuninclem.z 𝑍 = (ℤ𝑁)
meaiuninclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninclem.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninclem.b (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiuninclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiuninclem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiuninclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑛,𝑥   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑛,𝑥   𝑖,𝑁,𝑛,𝑥   𝑆,𝑛,𝑥   𝑖,𝑍,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem meaiuninclem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 meaiuninclem.z . . 3 𝑍 = (ℤ𝑁)
2 meaiuninclem.n . . 3 (𝜑𝑁 ∈ ℤ)
3 0xr 11282 . . . . . . 7 0 ∈ ℝ*
43a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → 0 ∈ ℝ*)
5 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → +∞ ∈ ℝ*)
7 meaiuninclem.m . . . . . . . 8 (𝜑𝑀 ∈ Meas)
87adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
9 eqid 2735 . . . . . . 7 dom 𝑀 = dom 𝑀
10 meaiuninclem.e . . . . . . . 8 (𝜑𝐸:𝑍⟶dom 𝑀)
1110ffvelcdmda 7074 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
128, 9, 11meaxrcl 46490 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
138, 11meage0 46504 . . . . . 6 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐸𝑛)))
14 meaiuninclem.b . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
16 simp1 1136 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝜑𝑛𝑍))
17 simp2 1137 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ)
18 simp3 1138 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1916simprd 495 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑛𝑍)
20 rspa 3231 . . . . . . . . . . 11 ((∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
22123ad2ant1 1133 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
23 rexr 11281 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
24233ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ*)
255a1i 11 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → +∞ ∈ ℝ*)
26 simp3 1138 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 ltpnf 13136 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 < +∞)
28273ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 < +∞)
2922, 24, 25, 26, 28xrlelttrd 13176 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
3016, 17, 21, 29syl3anc 1373 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
31303exp 1119 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ ℝ → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞)))
3231rexlimdv 3139 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞))
3315, 32mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) < +∞)
344, 6, 12, 13, 33elicod 13412 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,)+∞))
35 meaiuninclem.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
3634, 35fmptd 7104 . . . 4 (𝜑𝑆:𝑍⟶(0[,)+∞))
37 rge0ssre 13473 . . . . 5 (0[,)+∞) ⊆ ℝ
3837a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ ℝ)
3936, 38fssd 6723 . . 3 (𝜑𝑆:𝑍⟶ℝ)
401peano2uzs 12918 . . . . . . 7 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
4140adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
4210ffvelcdmda 7074 . . . . . 6 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
4341, 42syldan 591 . . . . 5 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
44 meaiuninclem.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
458, 9, 11, 43, 44meassle 46492 . . . 4 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1))))
4635a1i 11 . . . . . 6 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
47 fvexd 6891 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ V)
4846, 47fvmpt2d 6999 . . . . 5 ((𝜑𝑛𝑍) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
49 2fveq3 6881 . . . . . . . 8 (𝑛 = 𝑚 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑚)))
5049cbvmptv 5225 . . . . . . 7 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
5135, 50eqtri 2758 . . . . . 6 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
52 2fveq3 6881 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1))))
53 fvexd 6891 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸‘(𝑛 + 1))) ∈ V)
5451, 52, 41, 53fvmptd3 7009 . . . . 5 ((𝜑𝑛𝑍) → (𝑆‘(𝑛 + 1)) = (𝑀‘(𝐸‘(𝑛 + 1))))
5548, 54breq12d 5132 . . . 4 ((𝜑𝑛𝑍) → ((𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)) ↔ (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1)))))
5645, 55mpbird 257 . . 3 ((𝜑𝑛𝑍) → (𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)))
5748eqcomd 2741 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑆𝑛))
5857breq1d 5129 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑆𝑛) ≤ 𝑥))
5958ralbidva 3161 . . . . . . 7 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6059biimpd 229 . . . . . 6 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6160adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6261reximdva 3153 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6314, 62mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥)
641, 2, 39, 56, 63climsup 15686 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
65 nfv 1914 . . . . . 6 𝑛𝜑
66 nfv 1914 . . . . . 6 𝑥𝜑
67 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
68 fvex 6889 . . . . . . . . . . . . 13 (𝐸𝑛) ∈ V
6968difexi 5300 . . . . . . . . . . . 12 ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V
7069a1i 11 . . . . . . . . . . 11 (𝑛𝑍 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
71 meaiuninclem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7271fvmpt2 6997 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7367, 70, 72syl2anc 584 . . . . . . . . . 10 (𝑛𝑍 → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7473adantl 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
757, 9dmmeasal 46481 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ∈ SAlg)
7675adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
77 fzoct 45411 . . . . . . . . . . . 12 (𝑁..^𝑛) ≼ ω
7877a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑁..^𝑛) ≼ ω)
7910adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶dom 𝑀)
80 fzossuz 45408 . . . . . . . . . . . . . . . 16 (𝑁..^𝑛) ⊆ (ℤ𝑁)
811eqcomi 2744 . . . . . . . . . . . . . . . 16 (ℤ𝑁) = 𝑍
8280, 81sseqtri 4007 . . . . . . . . . . . . . . 15 (𝑁..^𝑛) ⊆ 𝑍
8382sseli 3954 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
8483adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
8579, 84ffvelcdmd 7075 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8685adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8776, 78, 86saliuncl 46352 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀)
88 saldifcl2 46357 . . . . . . . . . 10 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝑛) ∈ dom 𝑀 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
8976, 11, 87, 88syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
9074, 89eqeltrd 2834 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀)
918, 9, 90meaxrcl 46490 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ ℝ*)
928, 90meage0 46504 . . . . . . 7 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐹𝑛)))
93 difssd 4112 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
9474, 93eqsstrd 3993 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
958, 9, 90, 11, 94meassle 46492 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
9691, 12, 6, 95, 33xrlelttrd 13176 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) < +∞)
974, 6, 91, 92, 96elicod 13412 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞))
98 2fveq3 6881 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑖)))
9998breq1d 5129 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑖)) ≤ 𝑥))
10099cbvralvw 3220 . . . . . . . . . . . 12 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
101100biimpi 216 . . . . . . . . . . 11 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
102101adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
103 eleq1w 2817 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛𝑍𝑖𝑍))
104103anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝜑𝑛𝑍) ↔ (𝜑𝑖𝑍)))
105 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑁...𝑛) = (𝑁...𝑖))
106105sumeq1d 15716 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
10798, 106eqeq12d 2751 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) ↔ (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚))))
108104, 107imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))))
109 eleq1w 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (𝑚𝑍𝑛𝑍))
110109anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝜑𝑚𝑍) ↔ (𝜑𝑛𝑍)))
111 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (𝑁...𝑚) = (𝑁...𝑛))
112111iuneq1d 4995 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
113111iuneq1d 4995 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
114112, 113eqeq12d 2751 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ( 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) ↔ 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖)))
115110, 114imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)) ↔ ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))))
116 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
117116cbviunv 5016 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)
118117a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
11965, 1, 10, 71iundjiun 46489 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
120119simplld 767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
122 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑚𝑍)
123 rspa 3231 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
125 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
126125cbviunv 5016 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)
127126a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
128118, 124, 1273eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
129115, 128chvarvv 1998 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
13067, 1eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
131130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑁))
132 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1)))
133125, 132sseq12d 3992 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1))))
134104, 133imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))))
135134, 44chvarvv 1998 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
13684, 135syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
137136adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
138131, 137iunincfi 45118 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖) = (𝐸𝑛))
139129, 138eqtr2d 2771 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
140139fveq2d 6880 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
141 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑛𝑍)
142 elfzuz 13537 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ (ℤ𝑁))
143142, 81eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁...𝑛) → 𝑖𝑍)
144143adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → 𝑖𝑍)
145 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
146145eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → ((𝐹𝑛) ∈ dom 𝑀 ↔ (𝐹𝑖) ∈ dom 𝑀))
147104, 146imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)))
148147, 90chvarvv 1998 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)
149144, 148syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
150149adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
151 fzct 45406 . . . . . . . . . . . . . . . . . . 19 (𝑁...𝑛) ≼ ω
152151a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑁...𝑛) ≼ ω)
153144ssd 45104 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁...𝑛) ⊆ 𝑍)
154119simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
155145cbvdisjv 5097 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑖𝑍 (𝐹𝑖))
156154, 155sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑Disj 𝑖𝑍 (𝐹𝑖))
157 disjss1 5092 . . . . . . . . . . . . . . . . . . . 20 ((𝑁...𝑛) ⊆ 𝑍 → (Disj 𝑖𝑍 (𝐹𝑖) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
158153, 156, 157sylc 65 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
159158adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
160141, 8, 9, 150, 152, 159meadjiun 46495 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)) = (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))))
161 fzfid 13991 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑁...𝑛) ∈ Fin)
162 2fveq3 6881 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (𝑀‘(𝐹𝑛)) = (𝑀‘(𝐹𝑖)))
163162eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → ((𝑀‘(𝐹𝑛)) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞)))
164104, 163imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞)) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))))
165164, 97chvarvv 1998 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
166144, 165syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
167166adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
168161, 167sge0fsummpt 46419 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)))
169 2fveq3 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚 → (𝑀‘(𝐹𝑖)) = (𝑀‘(𝐹𝑚)))
170169cbvsumv 15712 . . . . . . . . . . . . . . . . . . 19 Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))
171170a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
172168, 171eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
173140, 160, 1723eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
174108, 173chvarvv 1998 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
175 2fveq3 6881 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (𝑀‘(𝐹𝑚)) = (𝑀‘(𝐹𝑛)))
176175cbvsumv 15712 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))
177176a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
178174, 177eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
179178breq1d 5129 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ((𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
180179ralbidva 3161 . . . . . . . . . . . 12 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
181180biimpd 229 . . . . . . . . . . 11 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
182181imp 406 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
183102, 182syldan 591 . . . . . . . . 9 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
184183ex 412 . . . . . . . 8 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
185184reximdv 3155 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
18614, 185mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
18765, 66, 2, 1, 97, 186sge0reuzb 46477 . . . . 5 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
18898cbvmptv 5225 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
18935, 188eqtri 2758 . . . . . . . . 9 𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
190189a1i 11 . . . . . . . 8 (𝜑𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))))
191178mpteq2dva 5214 . . . . . . . 8 (𝜑 → (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))) = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
192190, 191eqtrd 2770 . . . . . . 7 (𝜑𝑆 = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
193192rneqd 5918 . . . . . 6 (𝜑 → ran 𝑆 = ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
194193supeq1d 9458 . . . . 5 (𝜑 → sup(ran 𝑆, ℝ, < ) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
195187, 194eqtr4d 2773 . . . 4 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran 𝑆, ℝ, < ))
196195eqcomd 2741 . . 3 (𝜑 → sup(ran 𝑆, ℝ, < ) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
1971uzct 45087 . . . . . 6 𝑍 ≼ ω
198197a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
19965, 7, 9, 90, 198, 154meadjiun 46495 . . . 4 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
200199eqcomd 2741 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (𝑀 𝑛𝑍 (𝐹𝑛)))
201119simplrd 769 . . . 4 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
202201fveq2d 6880 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
203196, 200, 2023eqtrd 2774 . 2 (𝜑 → sup(ran 𝑆, ℝ, < ) = (𝑀 𝑛𝑍 (𝐸𝑛)))
20464, 203breqtrd 5145 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  wss 3926   ciun 4967  Disj wdisj 5086   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  supcsup 9452  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  [,)cico 13364  ...cfz 13524  ..^cfzo 13671  cli 15500  Σcsu 15702  SAlgcsalg 46337  Σ^csumge0 46391  Meascmea 46478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-salg 46338  df-sumge0 46392  df-mea 46479
This theorem is referenced by:  meaiuninc  46510
  Copyright terms: Public domain W3C validator