Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninclem Structured version   Visualization version   GIF version

Theorem meaiuninclem 46478
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiuninclem.m (𝜑𝑀 ∈ Meas)
meaiuninclem.n (𝜑𝑁 ∈ ℤ)
meaiuninclem.z 𝑍 = (ℤ𝑁)
meaiuninclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninclem.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninclem.b (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiuninclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiuninclem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiuninclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑛,𝑥   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑛,𝑥   𝑖,𝑁,𝑛,𝑥   𝑆,𝑛,𝑥   𝑖,𝑍,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem meaiuninclem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 meaiuninclem.z . . 3 𝑍 = (ℤ𝑁)
2 meaiuninclem.n . . 3 (𝜑𝑁 ∈ ℤ)
3 0xr 11221 . . . . . . 7 0 ∈ ℝ*
43a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → 0 ∈ ℝ*)
5 pnfxr 11228 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → +∞ ∈ ℝ*)
7 meaiuninclem.m . . . . . . . 8 (𝜑𝑀 ∈ Meas)
87adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
9 eqid 2729 . . . . . . 7 dom 𝑀 = dom 𝑀
10 meaiuninclem.e . . . . . . . 8 (𝜑𝐸:𝑍⟶dom 𝑀)
1110ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
128, 9, 11meaxrcl 46459 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
138, 11meage0 46473 . . . . . 6 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐸𝑛)))
14 meaiuninclem.b . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
16 simp1 1136 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝜑𝑛𝑍))
17 simp2 1137 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ)
18 simp3 1138 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1916simprd 495 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑛𝑍)
20 rspa 3226 . . . . . . . . . . 11 ((∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
22123ad2ant1 1133 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
23 rexr 11220 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
24233ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ*)
255a1i 11 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → +∞ ∈ ℝ*)
26 simp3 1138 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 ltpnf 13080 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 < +∞)
28273ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 < +∞)
2922, 24, 25, 26, 28xrlelttrd 13120 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
3016, 17, 21, 29syl3anc 1373 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
31303exp 1119 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ ℝ → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞)))
3231rexlimdv 3132 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞))
3315, 32mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) < +∞)
344, 6, 12, 13, 33elicod 13356 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,)+∞))
35 meaiuninclem.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
3634, 35fmptd 7086 . . . 4 (𝜑𝑆:𝑍⟶(0[,)+∞))
37 rge0ssre 13417 . . . . 5 (0[,)+∞) ⊆ ℝ
3837a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ ℝ)
3936, 38fssd 6705 . . 3 (𝜑𝑆:𝑍⟶ℝ)
401peano2uzs 12861 . . . . . . 7 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
4140adantl 481 . . . . . 6 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
4210ffvelcdmda 7056 . . . . . 6 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
4341, 42syldan 591 . . . . 5 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
44 meaiuninclem.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
458, 9, 11, 43, 44meassle 46461 . . . 4 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1))))
4635a1i 11 . . . . . 6 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
47 fvexd 6873 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ V)
4846, 47fvmpt2d 6981 . . . . 5 ((𝜑𝑛𝑍) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
49 2fveq3 6863 . . . . . . . 8 (𝑛 = 𝑚 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑚)))
5049cbvmptv 5211 . . . . . . 7 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
5135, 50eqtri 2752 . . . . . 6 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
52 2fveq3 6863 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1))))
53 fvexd 6873 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸‘(𝑛 + 1))) ∈ V)
5451, 52, 41, 53fvmptd3 6991 . . . . 5 ((𝜑𝑛𝑍) → (𝑆‘(𝑛 + 1)) = (𝑀‘(𝐸‘(𝑛 + 1))))
5548, 54breq12d 5120 . . . 4 ((𝜑𝑛𝑍) → ((𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)) ↔ (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1)))))
5645, 55mpbird 257 . . 3 ((𝜑𝑛𝑍) → (𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)))
5748eqcomd 2735 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑆𝑛))
5857breq1d 5117 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑆𝑛) ≤ 𝑥))
5958ralbidva 3154 . . . . . . 7 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6059biimpd 229 . . . . . 6 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6160adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6261reximdva 3146 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6314, 62mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥)
641, 2, 39, 56, 63climsup 15636 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
65 nfv 1914 . . . . . 6 𝑛𝜑
66 nfv 1914 . . . . . 6 𝑥𝜑
67 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
68 fvex 6871 . . . . . . . . . . . . 13 (𝐸𝑛) ∈ V
6968difexi 5285 . . . . . . . . . . . 12 ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V
7069a1i 11 . . . . . . . . . . 11 (𝑛𝑍 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
71 meaiuninclem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7271fvmpt2 6979 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7367, 70, 72syl2anc 584 . . . . . . . . . 10 (𝑛𝑍 → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7473adantl 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
757, 9dmmeasal 46450 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ∈ SAlg)
7675adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
77 fzoct 45380 . . . . . . . . . . . 12 (𝑁..^𝑛) ≼ ω
7877a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑁..^𝑛) ≼ ω)
7910adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶dom 𝑀)
80 fzossuz 45377 . . . . . . . . . . . . . . . 16 (𝑁..^𝑛) ⊆ (ℤ𝑁)
811eqcomi 2738 . . . . . . . . . . . . . . . 16 (ℤ𝑁) = 𝑍
8280, 81sseqtri 3995 . . . . . . . . . . . . . . 15 (𝑁..^𝑛) ⊆ 𝑍
8382sseli 3942 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
8483adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
8579, 84ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8685adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8776, 78, 86saliuncl 46321 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀)
88 saldifcl2 46326 . . . . . . . . . 10 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝑛) ∈ dom 𝑀 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
8976, 11, 87, 88syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
9074, 89eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀)
918, 9, 90meaxrcl 46459 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ ℝ*)
928, 90meage0 46473 . . . . . . 7 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐹𝑛)))
93 difssd 4100 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
9474, 93eqsstrd 3981 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
958, 9, 90, 11, 94meassle 46461 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
9691, 12, 6, 95, 33xrlelttrd 13120 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) < +∞)
974, 6, 91, 92, 96elicod 13356 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞))
98 2fveq3 6863 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑖)))
9998breq1d 5117 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑖)) ≤ 𝑥))
10099cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
101100biimpi 216 . . . . . . . . . . 11 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
102101adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
103 eleq1w 2811 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛𝑍𝑖𝑍))
104103anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝜑𝑛𝑍) ↔ (𝜑𝑖𝑍)))
105 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑁...𝑛) = (𝑁...𝑖))
106105sumeq1d 15666 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
10798, 106eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) ↔ (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚))))
108104, 107imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))))
109 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (𝑚𝑍𝑛𝑍))
110109anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝜑𝑚𝑍) ↔ (𝜑𝑛𝑍)))
111 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (𝑁...𝑚) = (𝑁...𝑛))
112111iuneq1d 4983 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
113111iuneq1d 4983 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
114112, 113eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ( 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) ↔ 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖)))
115110, 114imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)) ↔ ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))))
116 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
117116cbviunv 5004 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)
118117a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
11965, 1, 10, 71iundjiun 46458 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
120119simplld 767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
121120adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
122 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑚𝑍)
123 rspa 3226 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
125 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
126125cbviunv 5004 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)
127126a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
128118, 124, 1273eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
129115, 128chvarvv 1989 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
13067, 1eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
131130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑁))
132 fvoveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1)))
133125, 132sseq12d 3980 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1))))
134104, 133imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))))
135134, 44chvarvv 1989 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
13684, 135syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
137136adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
138131, 137iunincfi 45088 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖) = (𝐸𝑛))
139129, 138eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
140139fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
141 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑛𝑍)
142 elfzuz 13481 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ (ℤ𝑁))
143142, 81eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁...𝑛) → 𝑖𝑍)
144143adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → 𝑖𝑍)
145 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
146145eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → ((𝐹𝑛) ∈ dom 𝑀 ↔ (𝐹𝑖) ∈ dom 𝑀))
147104, 146imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)))
148147, 90chvarvv 1989 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)
149144, 148syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
150149adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
151 fzct 45375 . . . . . . . . . . . . . . . . . . 19 (𝑁...𝑛) ≼ ω
152151a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑁...𝑛) ≼ ω)
153144ssd 45074 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁...𝑛) ⊆ 𝑍)
154119simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
155145cbvdisjv 5085 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑖𝑍 (𝐹𝑖))
156154, 155sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑Disj 𝑖𝑍 (𝐹𝑖))
157 disjss1 5080 . . . . . . . . . . . . . . . . . . . 20 ((𝑁...𝑛) ⊆ 𝑍 → (Disj 𝑖𝑍 (𝐹𝑖) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
158153, 156, 157sylc 65 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
159158adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
160141, 8, 9, 150, 152, 159meadjiun 46464 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)) = (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))))
161 fzfid 13938 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑁...𝑛) ∈ Fin)
162 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (𝑀‘(𝐹𝑛)) = (𝑀‘(𝐹𝑖)))
163162eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → ((𝑀‘(𝐹𝑛)) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞)))
164104, 163imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞)) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))))
165164, 97chvarvv 1989 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
166144, 165syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
167166adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
168161, 167sge0fsummpt 46388 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)))
169 2fveq3 6863 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚 → (𝑀‘(𝐹𝑖)) = (𝑀‘(𝐹𝑚)))
170169cbvsumv 15662 . . . . . . . . . . . . . . . . . . 19 Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))
171170a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
172168, 171eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
173140, 160, 1723eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
174108, 173chvarvv 1989 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
175 2fveq3 6863 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (𝑀‘(𝐹𝑚)) = (𝑀‘(𝐹𝑛)))
176175cbvsumv 15662 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))
177176a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
178174, 177eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
179178breq1d 5117 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ((𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
180179ralbidva 3154 . . . . . . . . . . . 12 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
181180biimpd 229 . . . . . . . . . . 11 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
182181imp 406 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
183102, 182syldan 591 . . . . . . . . 9 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
184183ex 412 . . . . . . . 8 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
185184reximdv 3148 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
18614, 185mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
18765, 66, 2, 1, 97, 186sge0reuzb 46446 . . . . 5 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
18898cbvmptv 5211 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
18935, 188eqtri 2752 . . . . . . . . 9 𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
190189a1i 11 . . . . . . . 8 (𝜑𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))))
191178mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))) = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
192190, 191eqtrd 2764 . . . . . . 7 (𝜑𝑆 = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
193192rneqd 5902 . . . . . 6 (𝜑 → ran 𝑆 = ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
194193supeq1d 9397 . . . . 5 (𝜑 → sup(ran 𝑆, ℝ, < ) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
195187, 194eqtr4d 2767 . . . 4 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran 𝑆, ℝ, < ))
196195eqcomd 2735 . . 3 (𝜑 → sup(ran 𝑆, ℝ, < ) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
1971uzct 45057 . . . . . 6 𝑍 ≼ ω
198197a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
19965, 7, 9, 90, 198, 154meadjiun 46464 . . . 4 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
200199eqcomd 2735 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (𝑀 𝑛𝑍 (𝐹𝑛)))
201119simplrd 769 . . . 4 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
202201fveq2d 6862 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
203196, 200, 2023eqtrd 2768 . 2 (𝜑 → sup(ran 𝑆, ℝ, < ) = (𝑀 𝑛𝑍 (𝐸𝑛)))
20464, 203breqtrd 5133 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  cdom 8916  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cz 12529  cuz 12793  [,)cico 13308  ...cfz 13468  ..^cfzo 13615  cli 15450  Σcsu 15652  SAlgcsalg 46306  Σ^csumge0 46360  Meascmea 46447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-salg 46307  df-sumge0 46361  df-mea 46448
This theorem is referenced by:  meaiuninc  46479
  Copyright terms: Public domain W3C validator