Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninclem Structured version   Visualization version   GIF version

Theorem meaiuninclem 42326
Description: Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiuninclem.m (𝜑𝑀 ∈ Meas)
meaiuninclem.n (𝜑𝑁 ∈ ℤ)
meaiuninclem.z 𝑍 = (ℤ𝑁)
meaiuninclem.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninclem.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninclem.b (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
meaiuninclem.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
meaiuninclem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
meaiuninclem (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑛,𝑥   𝑖,𝐹,𝑛,𝑥   𝑖,𝑀,𝑛,𝑥   𝑖,𝑁,𝑛,𝑥   𝑆,𝑛,𝑥   𝑖,𝑍,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem meaiuninclem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 meaiuninclem.z . . 3 𝑍 = (ℤ𝑁)
2 meaiuninclem.n . . 3 (𝜑𝑁 ∈ ℤ)
3 0xr 10541 . . . . . . 7 0 ∈ ℝ*
43a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → 0 ∈ ℝ*)
5 pnfxr 10548 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → +∞ ∈ ℝ*)
7 meaiuninclem.m . . . . . . . 8 (𝜑𝑀 ∈ Meas)
87adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
9 eqid 2797 . . . . . . 7 dom 𝑀 = dom 𝑀
10 meaiuninclem.e . . . . . . . 8 (𝜑𝐸:𝑍⟶dom 𝑀)
1110ffvelrnda 6723 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
128, 9, 11meaxrcl 42307 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
138, 11meage0 42321 . . . . . 6 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐸𝑛)))
14 meaiuninclem.b . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1514adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
16 simp1 1129 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝜑𝑛𝑍))
17 simp2 1130 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ)
18 simp3 1131 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
1916simprd 496 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑛𝑍)
20 rspa 3175 . . . . . . . . . . 11 ((∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2118, 19, 20syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
22123ad2ant1 1126 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
23 rexr 10540 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
24233ad2ant2 1127 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ*)
255a1i 11 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → +∞ ∈ ℝ*)
26 simp3 1131 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 ltpnf 12369 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 < +∞)
28273ad2ant2 1127 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑥 < +∞)
2922, 24, 25, 26, 28xrlelttrd 12407 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
3016, 17, 21, 29syl3anc 1364 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (𝑀‘(𝐸𝑛)) < +∞)
31303exp 1112 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑥 ∈ ℝ → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞)))
3231rexlimdv 3248 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → (𝑀‘(𝐸𝑛)) < +∞))
3315, 32mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) < +∞)
344, 6, 12, 13, 33elicod 12641 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ (0[,)+∞))
35 meaiuninclem.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
3634, 35fmptd 6748 . . . 4 (𝜑𝑆:𝑍⟶(0[,)+∞))
37 rge0ssre 12698 . . . . 5 (0[,)+∞) ⊆ ℝ
3837a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ ℝ)
3936, 38fssd 6403 . . 3 (𝜑𝑆:𝑍⟶ℝ)
401peano2uzs 12155 . . . . . . 7 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
4140adantl 482 . . . . . 6 ((𝜑𝑛𝑍) → (𝑛 + 1) ∈ 𝑍)
4210ffvelrnda 6723 . . . . . 6 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
4341, 42syldan 591 . . . . 5 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀)
44 meaiuninclem.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
458, 9, 11, 43, 44meassle 42309 . . . 4 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1))))
4635a1i 11 . . . . . 6 (𝜑𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))))
47 fvexd 6560 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ V)
4846, 47fvmpt2d 6654 . . . . 5 ((𝜑𝑛𝑍) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
49 2fveq3 6550 . . . . . . . 8 (𝑛 = 𝑚 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑚)))
5049cbvmptv 5068 . . . . . . 7 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
5135, 50eqtri 2821 . . . . . 6 𝑆 = (𝑚𝑍 ↦ (𝑀‘(𝐸𝑚)))
52 2fveq3 6550 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑀‘(𝐸𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1))))
53 fvexd 6560 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐸‘(𝑛 + 1))) ∈ V)
5451, 52, 41, 53fvmptd3 6664 . . . . 5 ((𝜑𝑛𝑍) → (𝑆‘(𝑛 + 1)) = (𝑀‘(𝐸‘(𝑛 + 1))))
5548, 54breq12d 4981 . . . 4 ((𝜑𝑛𝑍) → ((𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)) ↔ (𝑀‘(𝐸𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1)))))
5645, 55mpbird 258 . . 3 ((𝜑𝑛𝑍) → (𝑆𝑛) ≤ (𝑆‘(𝑛 + 1)))
5748eqcomd 2803 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑆𝑛))
5857breq1d 4978 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑆𝑛) ≤ 𝑥))
5958ralbidva 3165 . . . . . . 7 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6059biimpd 230 . . . . . 6 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6160adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6261reximdva 3239 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥))
6314, 62mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑆𝑛) ≤ 𝑥)
641, 2, 39, 56, 63climsup 14864 . 2 (𝜑𝑆 ⇝ sup(ran 𝑆, ℝ, < ))
65 nfv 1896 . . . . . 6 𝑛𝜑
66 nfv 1896 . . . . . 6 𝑥𝜑
67 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
68 fvex 6558 . . . . . . . . . . . . 13 (𝐸𝑛) ∈ V
6968difexi 5130 . . . . . . . . . . . 12 ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V
7069a1i 11 . . . . . . . . . . 11 (𝑛𝑍 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
71 meaiuninclem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7271fvmpt2 6652 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7367, 70, 72syl2anc 584 . . . . . . . . . 10 (𝑛𝑍 → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
7473adantl 482 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
757, 9dmmeasal 42298 . . . . . . . . . . 11 (𝜑 → dom 𝑀 ∈ SAlg)
7675adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → dom 𝑀 ∈ SAlg)
77 fzoct 41216 . . . . . . . . . . . 12 (𝑁..^𝑛) ≼ ω
7877a1i 11 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝑁..^𝑛) ≼ ω)
7910adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶dom 𝑀)
80 fzossuz 41212 . . . . . . . . . . . . . . . 16 (𝑁..^𝑛) ⊆ (ℤ𝑁)
811eqcomi 2806 . . . . . . . . . . . . . . . 16 (ℤ𝑁) = 𝑍
8280, 81sseqtri 3930 . . . . . . . . . . . . . . 15 (𝑁..^𝑛) ⊆ 𝑍
8382sseli 3891 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑁..^𝑛) → 𝑖𝑍)
8483adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑍)
8579, 84ffvelrnd 6724 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8685adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ∈ dom 𝑀)
8776, 78, 86saliuncl 42171 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀)
88 saldifcl2 42175 . . . . . . . . . 10 ((dom 𝑀 ∈ SAlg ∧ (𝐸𝑛) ∈ dom 𝑀 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ∈ dom 𝑀) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
8976, 11, 87, 88syl3anc 1364 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ dom 𝑀)
9074, 89eqeltrd 2885 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀)
918, 9, 90meaxrcl 42307 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ ℝ*)
928, 90meage0 42321 . . . . . . 7 ((𝜑𝑛𝑍) → 0 ≤ (𝑀‘(𝐹𝑛)))
93 difssd 4036 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
9474, 93eqsstrd 3932 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
958, 9, 90, 11, 94meassle 42309 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ≤ (𝑀‘(𝐸𝑛)))
9691, 12, 6, 95, 33xrlelttrd 12407 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) < +∞)
974, 6, 91, 92, 96elicod 12641 . . . . . 6 ((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞))
98 2fveq3 6550 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑖)))
9998breq1d 4978 . . . . . . . . . . . . 13 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸𝑖)) ≤ 𝑥))
10099cbvralv 3405 . . . . . . . . . . . 12 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
101100biimpi 217 . . . . . . . . . . 11 (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
102101adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥)
103 eleq1w 2867 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛𝑍𝑖𝑍))
104103anbi2d 628 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝜑𝑛𝑍) ↔ (𝜑𝑖𝑍)))
105 oveq2 7031 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑁...𝑛) = (𝑁...𝑖))
106105sumeq1d 14895 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
10798, 106eqeq12d 2812 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → ((𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)) ↔ (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚))))
108104, 107imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))))
109 eleq1w 2867 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (𝑚𝑍𝑛𝑍))
110109anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ((𝜑𝑚𝑍) ↔ (𝜑𝑛𝑍)))
111 oveq2 7031 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (𝑁...𝑚) = (𝑁...𝑛))
112111iuneq1d 4857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
113111iuneq1d 4857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
114112, 113eqeq12d 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → ( 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖) ↔ 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖)))
115110, 114imbi12d 346 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)) ↔ ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))))
116 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
117116cbviunv 4872 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)
118117a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
11965, 1, 10, 71iundjiun 42306 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
120119simplld 764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
121120adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
122 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚𝑍) → 𝑚𝑍)
123 rspa 3175 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
125 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
126125cbviunv 4872 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖)
127126a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
128118, 124, 1273eqtrd 2837 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝑖 ∈ (𝑁...𝑚)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑚)(𝐸𝑖))
129115, 128chvarv 2372 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖) = 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖))
13067, 1syl6eleq 2895 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
131130adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑁))
132 fvoveq1 7046 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1)))
133125, 132sseq12d 3927 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1))))
134104, 133imbi12d 346 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))))
135134, 44chvarv 2372 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖𝑍) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
13684, 135syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
137136adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸𝑖) ⊆ (𝐸‘(𝑖 + 1)))
138131, 137iunincfi 40920 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑖 ∈ (𝑁...𝑛)(𝐸𝑖) = (𝐸𝑛))
139129, 138eqtr2d 2834 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) = 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
140139fveq2d 6549 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
141 nfv 1896 . . . . . . . . . . . . . . . . . 18 𝑖(𝜑𝑛𝑍)
142 elfzuz 12758 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ (ℤ𝑁))
143142, 81syl6eleq 2895 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁...𝑛) → 𝑖𝑍)
144143adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → 𝑖𝑍)
145 fveq2 6545 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
146145eleq1d 2869 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → ((𝐹𝑛) ∈ dom 𝑀 ↔ (𝐹𝑖) ∈ dom 𝑀))
147104, 146imbi12d 346 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝐹𝑛) ∈ dom 𝑀) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)))
148147, 90chvarv 2372 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝐹𝑖) ∈ dom 𝑀)
149144, 148syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
150149adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹𝑖) ∈ dom 𝑀)
151 fzct 41210 . . . . . . . . . . . . . . . . . . 19 (𝑁...𝑛) ≼ ω
152151a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑁...𝑛) ≼ ω)
153144ssd 40904 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁...𝑛) ⊆ 𝑍)
154119simprd 496 . . . . . . . . . . . . . . . . . . . . 21 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
155145cbvdisjv 4947 . . . . . . . . . . . . . . . . . . . . 21 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑖𝑍 (𝐹𝑖))
156154, 155sylib 219 . . . . . . . . . . . . . . . . . . . 20 (𝜑Disj 𝑖𝑍 (𝐹𝑖))
157 disjss1 4942 . . . . . . . . . . . . . . . . . . . 20 ((𝑁...𝑛) ⊆ 𝑍 → (Disj 𝑖𝑍 (𝐹𝑖) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)))
158153, 156, 157sylc 65 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
159158adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖))
160141, 8, 9, 150, 152, 159meadjiun 42312 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑀 𝑖 ∈ (𝑁...𝑛)(𝐹𝑖)) = (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))))
161 fzfid 13195 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑁...𝑛) ∈ Fin)
162 2fveq3 6550 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑖 → (𝑀‘(𝐹𝑛)) = (𝑀‘(𝐹𝑖)))
163162eleq1d 2869 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑖 → ((𝑀‘(𝐹𝑛)) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞)))
164104, 163imbi12d 346 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑖 → (((𝜑𝑛𝑍) → (𝑀‘(𝐹𝑛)) ∈ (0[,)+∞)) ↔ ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))))
165164, 97chvarv 2372 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
166144, 165syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
167166adantlr 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹𝑖)) ∈ (0[,)+∞))
168161, 167sge0fsummpt 42236 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)))
169 2fveq3 6550 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚 → (𝑀‘(𝐹𝑖)) = (𝑀‘(𝐹𝑚)))
170169cbvsumv 14890 . . . . . . . . . . . . . . . . . . 19 Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚))
171170a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
172168, 171eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹𝑖)))) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
173140, 160, 1723eqtrd 2837 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹𝑚)))
174108, 173chvarv 2372 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)))
175 2fveq3 6550 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (𝑀‘(𝐹𝑚)) = (𝑀‘(𝐹𝑛)))
176175cbvsumv 14890 . . . . . . . . . . . . . . . 16 Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))
177176a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
178174, 177eqtrd 2833 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝑀‘(𝐸𝑖)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)))
179178breq1d 4978 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ((𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
180179ralbidva 3165 . . . . . . . . . . . 12 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 ↔ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
181180biimpd 230 . . . . . . . . . . 11 (𝜑 → (∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
182181imp 407 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑖𝑍 (𝑀‘(𝐸𝑖)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
183102, 182syldan 591 . . . . . . . . 9 ((𝜑 ∧ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
184183ex 413 . . . . . . . 8 (𝜑 → (∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
185184reximdv 3238 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥))
18614, 185mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛)) ≤ 𝑥)
18765, 66, 2, 1, 97, 186sge0reuzb 42294 . . . . 5 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
18898cbvmptv 5068 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛))) = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
18935, 188eqtri 2821 . . . . . . . . 9 𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖)))
190189a1i 11 . . . . . . . 8 (𝜑𝑆 = (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))))
191178mpteq2dva 5062 . . . . . . . 8 (𝜑 → (𝑖𝑍 ↦ (𝑀‘(𝐸𝑖))) = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
192190, 191eqtrd 2833 . . . . . . 7 (𝜑𝑆 = (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
193192rneqd 5697 . . . . . 6 (𝜑 → ran 𝑆 = ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))))
194193supeq1d 8763 . . . . 5 (𝜑 → sup(ran 𝑆, ℝ, < ) = sup(ran (𝑖𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹𝑛))), ℝ, < ))
195187, 194eqtr4d 2836 . . . 4 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = sup(ran 𝑆, ℝ, < ))
196195eqcomd 2803 . . 3 (𝜑 → sup(ran 𝑆, ℝ, < ) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
1971uzct 40885 . . . . . 6 𝑍 ≼ ω
198197a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
19965, 7, 9, 90, 198, 154meadjiun 42312 . . . 4 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))))
200199eqcomd 2803 . . 3 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑀‘(𝐹𝑛)))) = (𝑀 𝑛𝑍 (𝐹𝑛)))
201119simplrd 766 . . . 4 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
202201fveq2d 6549 . . 3 (𝜑 → (𝑀 𝑛𝑍 (𝐹𝑛)) = (𝑀 𝑛𝑍 (𝐸𝑛)))
203196, 200, 2023eqtrd 2837 . 2 (𝜑 → sup(ran 𝑆, ℝ, < ) = (𝑀 𝑛𝑍 (𝐸𝑛)))
20464, 203breqtrd 4994 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wral 3107  wrex 3108  Vcvv 3440  cdif 3862  wss 3865   ciun 4831  Disj wdisj 4936   class class class wbr 4968  cmpt 5047  dom cdm 5450  ran crn 5451  wf 6228  cfv 6232  (class class class)co 7023  ωcom 7443  cdom 8362  supcsup 8757  cr 10389  0cc0 10390  1c1 10391   + caddc 10393  +∞cpnf 10525  *cxr 10527   < clt 10528  cle 10529  cz 11835  cuz 12097  [,)cico 12594  ...cfz 12746  ..^cfzo 12887  cli 14679  Σcsu 14880  SAlgcsalg 42157  Σ^csumge0 42208  Meascmea 42295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-disj 4937  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-omul 7965  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-card 9221  df-acn 9224  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-xadd 12362  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-salg 42158  df-sumge0 42209  df-mea 42296
This theorem is referenced by:  meaiuninc  42327
  Copyright terms: Public domain W3C validator