Step | Hyp | Ref
| Expression |
1 | | meaiuninclem.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑁) |
2 | | meaiuninclem.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | | 0xr 11022 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
4 | 3 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 0 ∈
ℝ*) |
5 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
6 | 5 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → +∞ ∈
ℝ*) |
7 | | meaiuninclem.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ Meas) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ Meas) |
9 | | eqid 2738 |
. . . . . . 7
⊢ dom 𝑀 = dom 𝑀 |
10 | | meaiuninclem.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
11 | 10 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ dom 𝑀) |
12 | 8, 9, 11 | meaxrcl 43999 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈
ℝ*) |
13 | 8, 11 | meage0 44013 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 0 ≤ (𝑀‘(𝐸‘𝑛))) |
14 | | meaiuninclem.b |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
16 | | simp1 1135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝜑 ∧ 𝑛 ∈ 𝑍)) |
17 | | simp2 1136 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ) |
18 | | simp3 1137 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
19 | 16 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → 𝑛 ∈ 𝑍) |
20 | | rspa 3132 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
21 | 18, 19, 20 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
22 | 12 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝑀‘(𝐸‘𝑛)) ∈
ℝ*) |
23 | | rexr 11021 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
24 | 23 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
25 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → +∞ ∈
ℝ*) |
26 | | simp3 1137 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) |
27 | | ltpnf 12856 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
28 | 27 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → 𝑥 < +∞) |
29 | 22, 24, 25, 26, 28 | xrlelttrd 12894 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝑀‘(𝐸‘𝑛)) < +∞) |
30 | 16, 17, 21, 29 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ℝ ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → (𝑀‘(𝐸‘𝑛)) < +∞) |
31 | 30 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ ℝ → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → (𝑀‘(𝐸‘𝑛)) < +∞))) |
32 | 31 | rexlimdv 3212 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → (𝑀‘(𝐸‘𝑛)) < +∞)) |
33 | 15, 32 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) < +∞) |
34 | 4, 6, 12, 13, 33 | elicod 13129 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈ (0[,)+∞)) |
35 | | meaiuninclem.s |
. . . . 5
⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
36 | 34, 35 | fmptd 6988 |
. . . 4
⊢ (𝜑 → 𝑆:𝑍⟶(0[,)+∞)) |
37 | | rge0ssre 13188 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ |
38 | 37 | a1i 11 |
. . . 4
⊢ (𝜑 → (0[,)+∞) ⊆
ℝ) |
39 | 36, 38 | fssd 6618 |
. . 3
⊢ (𝜑 → 𝑆:𝑍⟶ℝ) |
40 | 1 | peano2uzs 12642 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → (𝑛 + 1) ∈ 𝑍) |
41 | 40 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍) |
42 | 10 | ffvelrnda 6961 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀) |
43 | 41, 42 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ∈ dom 𝑀) |
44 | | meaiuninclem.i |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) |
45 | 8, 9, 11, 43, 44 | meassle 44001 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1)))) |
46 | 35 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛)))) |
47 | | fvexd 6789 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ∈ V) |
48 | 46, 47 | fvmpt2d 6888 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑆‘𝑛) = (𝑀‘(𝐸‘𝑛))) |
49 | | 2fveq3 6779 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) |
50 | 49 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
51 | 35, 50 | eqtri 2766 |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
52 | | 2fveq3 6779 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (𝑀‘(𝐸‘𝑚)) = (𝑀‘(𝐸‘(𝑛 + 1)))) |
53 | | fvexd 6789 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘(𝑛 + 1))) ∈ V) |
54 | 51, 52, 41, 53 | fvmptd3 6898 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑆‘(𝑛 + 1)) = (𝑀‘(𝐸‘(𝑛 + 1)))) |
55 | 48, 54 | breq12d 5087 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑆‘𝑛) ≤ (𝑆‘(𝑛 + 1)) ↔ (𝑀‘(𝐸‘𝑛)) ≤ (𝑀‘(𝐸‘(𝑛 + 1))))) |
56 | 45, 55 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑆‘𝑛) ≤ (𝑆‘(𝑛 + 1))) |
57 | 48 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) = (𝑆‘𝑛)) |
58 | 57 | breq1d 5084 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑆‘𝑛) ≤ 𝑥)) |
59 | 58 | ralbidva 3111 |
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ 𝑍 (𝑆‘𝑛) ≤ 𝑥)) |
60 | 59 | biimpd 228 |
. . . . . 6
⊢ (𝜑 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∀𝑛 ∈ 𝑍 (𝑆‘𝑛) ≤ 𝑥)) |
61 | 60 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∀𝑛 ∈ 𝑍 (𝑆‘𝑛) ≤ 𝑥)) |
62 | 61 | reximdva 3203 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑆‘𝑛) ≤ 𝑥)) |
63 | 14, 62 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑆‘𝑛) ≤ 𝑥) |
64 | 1, 2, 39, 56, 63 | climsup 15381 |
. 2
⊢ (𝜑 → 𝑆 ⇝ sup(ran 𝑆, ℝ, < )) |
65 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑛𝜑 |
66 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
67 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
68 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ (𝐸‘𝑛) ∈ V |
69 | 68 | difexi 5252 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V |
70 | 69 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) |
71 | | meaiuninclem.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
72 | 71 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ 𝑍 ∧ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
73 | 67, 70, 72 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
74 | 73 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
75 | 7, 9 | dmmeasal 43990 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑀 ∈ SAlg) |
76 | 75 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom 𝑀 ∈ SAlg) |
77 | | fzoct 42923 |
. . . . . . . . . . . 12
⊢ (𝑁..^𝑛) ≼ ω |
78 | 77 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑁..^𝑛) ≼ ω) |
79 | 10 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝐸:𝑍⟶dom 𝑀) |
80 | | fzossuz 42920 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁..^𝑛) ⊆ (ℤ≥‘𝑁) |
81 | 1 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑁) = 𝑍 |
82 | 80, 81 | sseqtri 3957 |
. . . . . . . . . . . . . . 15
⊢ (𝑁..^𝑛) ⊆ 𝑍 |
83 | 82 | sseli 3917 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ 𝑍) |
84 | 83 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ 𝑍) |
85 | 79, 84 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ∈ dom 𝑀) |
86 | 85 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ∈ dom 𝑀) |
87 | 76, 78, 86 | saliuncl 43863 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ dom 𝑀) |
88 | | saldifcl2 43867 |
. . . . . . . . . 10
⊢ ((dom
𝑀 ∈ SAlg ∧ (𝐸‘𝑛) ∈ dom 𝑀 ∧ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ∈ dom 𝑀) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ dom 𝑀) |
89 | 76, 11, 87, 88 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ dom 𝑀) |
90 | 74, 89 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ dom 𝑀) |
91 | 8, 9, 90 | meaxrcl 43999 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈
ℝ*) |
92 | 8, 90 | meage0 44013 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 0 ≤ (𝑀‘(𝐹‘𝑛))) |
93 | | difssd 4067 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ⊆ (𝐸‘𝑛)) |
94 | 74, 93 | eqsstrd 3959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
95 | 8, 9, 90, 11, 94 | meassle 44001 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ≤ (𝑀‘(𝐸‘𝑛))) |
96 | 91, 12, 6, 95, 33 | xrlelttrd 12894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) < +∞) |
97 | 4, 6, 91, 92, 96 | elicod 13129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈ (0[,)+∞)) |
98 | | 2fveq3 6779 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑖))) |
99 | 98 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑖 → ((𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ (𝑀‘(𝐸‘𝑖)) ≤ 𝑥)) |
100 | 99 | cbvralvw 3383 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 ↔ ∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥) |
101 | 100 | biimpi 215 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥) |
102 | 101 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → ∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥) |
103 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
104 | 103 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
105 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑖 → (𝑁...𝑛) = (𝑁...𝑖)) |
106 | 105 | sumeq1d 15413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑖 → Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑚))) |
107 | 98, 106 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → ((𝑀‘(𝐸‘𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚)) ↔ (𝑀‘(𝐸‘𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑚)))) |
108 | 104, 107 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚))) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑀‘(𝐸‘𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑚))))) |
109 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑛 → (𝑚 ∈ 𝑍 ↔ 𝑛 ∈ 𝑍)) |
110 | 109 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → ((𝜑 ∧ 𝑚 ∈ 𝑍) ↔ (𝜑 ∧ 𝑛 ∈ 𝑍))) |
111 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑛 → (𝑁...𝑚) = (𝑁...𝑛)) |
112 | 111 | iuneq1d 4951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑛 → ∪
𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖)) |
113 | 111 | iuneq1d 4951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑛 → ∪
𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐸‘𝑖)) |
114 | 112, 113 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (∪
𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖) ↔ ∪
𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐸‘𝑖))) |
115 | 110, 114 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (((𝜑 ∧ 𝑚 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖)) ↔ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐸‘𝑖)))) |
116 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑛 → (𝐹‘𝑖) = (𝐹‘𝑛)) |
117 | 116 | cbviunv 4970 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) |
118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)) |
119 | 65, 1, 10, 71 | iundjiun 43998 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
120 | 119 | simplld 765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
121 | 120 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
122 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
123 | | rspa 3132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑚 ∈
𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ 𝑚 ∈ 𝑍) → ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
124 | 121, 122,
123 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
125 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝐸‘𝑛) = (𝐸‘𝑖)) |
126 | 125 | cbviunv 4970 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) = ∪ 𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖) |
127 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) = ∪ 𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖)) |
128 | 118, 124,
127 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑚)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑚)(𝐸‘𝑖)) |
129 | 115, 128 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐸‘𝑖)) |
130 | 67, 1 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑁)) |
131 | 130 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑁)) |
132 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1))) |
133 | 125, 132 | sseq12d 3954 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑖 → ((𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸‘𝑖) ⊆ (𝐸‘(𝑖 + 1)))) |
134 | 104, 133 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘𝑖) ⊆ (𝐸‘(𝑖 + 1))))) |
135 | 134, 44 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘𝑖) ⊆ (𝐸‘(𝑖 + 1))) |
136 | 84, 135 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ⊆ (𝐸‘(𝑖 + 1))) |
137 | 136 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝐸‘𝑖) ⊆ (𝐸‘(𝑖 + 1))) |
138 | 131, 137 | iunincfi 42644 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∪
𝑖 ∈ (𝑁...𝑛)(𝐸‘𝑖) = (𝐸‘𝑛)) |
139 | 129, 138 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) = ∪ 𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖)) |
140 | 139 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) = (𝑀‘∪
𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖))) |
141 | | nfv 1917 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝜑 ∧ 𝑛 ∈ 𝑍) |
142 | | elfzuz 13252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ (ℤ≥‘𝑁)) |
143 | 142, 81 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝑁...𝑛) → 𝑖 ∈ 𝑍) |
144 | 143 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑛)) → 𝑖 ∈ 𝑍) |
145 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) |
146 | 145 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑖 → ((𝐹‘𝑛) ∈ dom 𝑀 ↔ (𝐹‘𝑖) ∈ dom 𝑀)) |
147 | 104, 146 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ dom 𝑀) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖) ∈ dom 𝑀))) |
148 | 147, 90 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖) ∈ dom 𝑀) |
149 | 144, 148 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹‘𝑖) ∈ dom 𝑀) |
150 | 149 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝐹‘𝑖) ∈ dom 𝑀) |
151 | | fzct 42918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁...𝑛) ≼ ω |
152 | 151 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑁...𝑛) ≼ ω) |
153 | 144 | ssd 42630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁...𝑛) ⊆ 𝑍) |
154 | 119 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
155 | 145 | cbvdisjv 5050 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Disj 𝑛
∈ 𝑍 (𝐹‘𝑛) ↔ Disj 𝑖 ∈ 𝑍 (𝐹‘𝑖)) |
156 | 154, 155 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → Disj 𝑖 ∈ 𝑍 (𝐹‘𝑖)) |
157 | | disjss1 5045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁...𝑛) ⊆ 𝑍 → (Disj 𝑖 ∈ 𝑍 (𝐹‘𝑖) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖))) |
158 | 153, 156,
157 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖)) |
159 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Disj 𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖)) |
160 | 141, 8, 9, 150, 152, 159 | meadjiun 44004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘∪
𝑖 ∈ (𝑁...𝑛)(𝐹‘𝑖)) =
(Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹‘𝑖))))) |
161 | | fzfid 13693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑁...𝑛) ∈ Fin) |
162 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑖 → (𝑀‘(𝐹‘𝑛)) = (𝑀‘(𝐹‘𝑖))) |
163 | 162 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → ((𝑀‘(𝐹‘𝑛)) ∈ (0[,)+∞) ↔ (𝑀‘(𝐹‘𝑖)) ∈ (0[,)+∞))) |
164 | 104, 163 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐹‘𝑛)) ∈ (0[,)+∞)) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑀‘(𝐹‘𝑖)) ∈ (0[,)+∞)))) |
165 | 164, 97 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑀‘(𝐹‘𝑖)) ∈ (0[,)+∞)) |
166 | 144, 165 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹‘𝑖)) ∈ (0[,)+∞)) |
167 | 166 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑖 ∈ (𝑁...𝑛)) → (𝑀‘(𝐹‘𝑖)) ∈ (0[,)+∞)) |
168 | 161, 167 | sge0fsummpt 43928 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) →
(Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹‘𝑖)))) = Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑖))) |
169 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑚 → (𝑀‘(𝐹‘𝑖)) = (𝑀‘(𝐹‘𝑚))) |
170 | 169 | cbvsumv 15408 |
. . . . . . . . . . . . . . . . . . 19
⊢
Σ𝑖 ∈
(𝑁...𝑛)(𝑀‘(𝐹‘𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚)) |
171 | 170 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑖 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑖)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚))) |
172 | 168, 171 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) →
(Σ^‘(𝑖 ∈ (𝑁...𝑛) ↦ (𝑀‘(𝐹‘𝑖)))) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚))) |
173 | 140, 160,
172 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) = Σ𝑚 ∈ (𝑁...𝑛)(𝑀‘(𝐹‘𝑚))) |
174 | 108, 173 | chvarvv 2002 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑀‘(𝐸‘𝑖)) = Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑚))) |
175 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (𝑀‘(𝐹‘𝑚)) = (𝑀‘(𝐹‘𝑛))) |
176 | 175 | cbvsumv 15408 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑚 ∈
(𝑁...𝑖)(𝑀‘(𝐹‘𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) |
177 | 176 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → Σ𝑚 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑚)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛))) |
178 | 174, 177 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑀‘(𝐸‘𝑖)) = Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛))) |
179 | 178 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑀‘(𝐸‘𝑖)) ≤ 𝑥 ↔ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥)) |
180 | 179 | ralbidva 3111 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥 ↔ ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥)) |
181 | 180 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥 → ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥)) |
182 | 181 | imp 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑖 ∈ 𝑍 (𝑀‘(𝐸‘𝑖)) ≤ 𝑥) → ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥) |
183 | 102, 182 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) → ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥) |
184 | 183 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥)) |
185 | 184 | reximdv 3202 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥)) |
186 | 14, 185 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)) ≤ 𝑥) |
187 | 65, 66, 2, 1, 97, 186 | sge0reuzb 43986 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) = sup(ran (𝑖 ∈ 𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛))), ℝ, < )) |
188 | 98 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) |
189 | 35, 188 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑆 = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) |
190 | 189 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖)))) |
191 | 178 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) = (𝑖 ∈ 𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)))) |
192 | 190, 191 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → 𝑆 = (𝑖 ∈ 𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)))) |
193 | 192 | rneqd 5847 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 = ran (𝑖 ∈ 𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛)))) |
194 | 193 | supeq1d 9205 |
. . . . 5
⊢ (𝜑 → sup(ran 𝑆, ℝ, < ) = sup(ran (𝑖 ∈ 𝑍 ↦ Σ𝑛 ∈ (𝑁...𝑖)(𝑀‘(𝐹‘𝑛))), ℝ, < )) |
195 | 187, 194 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) = sup(ran 𝑆, ℝ, < )) |
196 | 195 | eqcomd 2744 |
. . 3
⊢ (𝜑 → sup(ran 𝑆, ℝ, < ) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
197 | 1 | uzct 42611 |
. . . . . 6
⊢ 𝑍 ≼
ω |
198 | 197 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ≼ ω) |
199 | 65, 7, 9, 90, 198, 154 | meadjiun 44004 |
. . . 4
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐹‘𝑛)) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛))))) |
200 | 199 | eqcomd 2744 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐹‘𝑛)))) = (𝑀‘∪
𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
201 | 119 | simplrd 767 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
202 | 201 | fveq2d 6778 |
. . 3
⊢ (𝜑 → (𝑀‘∪
𝑛 ∈ 𝑍 (𝐹‘𝑛)) = (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
203 | 196, 200,
202 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ, < ) = (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
204 | 64, 203 | breqtrd 5100 |
1
⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) |