Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmea Structured version   Visualization version   GIF version

Theorem volmea 44789
Description: The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volmea (𝜑 → vol ∈ Meas)

Proof of Theorem volmea
Dummy variables 𝑒 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmvolsal 44661 . . 3 dom vol ∈ SAlg
21a1i 11 . 2 (𝜑 → dom vol ∈ SAlg)
3 volf 24909 . . 3 vol:dom vol⟶(0[,]+∞)
43a1i 11 . 2 (𝜑 → vol:dom vol⟶(0[,]+∞))
5 vol0 44274 . . 3 (vol‘∅) = 0
65a1i 11 . 2 (𝜑 → (vol‘∅) = 0)
7 simp1 1137 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
8 simp2 1138 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶dom vol)
9 fveq2 6847 . . . . . 6 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
109cbvdisjv 5086 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) ↔ Disj 𝑛 ∈ ℕ (𝑒𝑛))
1110biimpri 227 . . . 4 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
12113ad2ant3 1136 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
13 simp2 1138 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶dom vol)
1410biimpi 215 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
15143ad2ant3 1136 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
1613, 15voliunsge0 44788 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
177, 8, 12, 16syl3anc 1372 . 2 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
182, 4, 6, 17ismeannd 44782 1 (𝜑 → vol ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  c0 4287   ciun 4959  Disj wdisj 5075  cmpt 5193  dom cdm 5638  wf 6497  cfv 6501  (class class class)co 7362  0cc0 11058  +∞cpnf 11193  cn 12160  [,]cicc 13274  volcvol 24843  SAlgcsalg 44623  Σ^csumge0 44677  Meascmea 44764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cc 10378  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-salg 44624  df-sumge0 44678  df-mea 44765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator