Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volmea Structured version   Visualization version   GIF version

Theorem volmea 42746
Description: The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volmea (𝜑 → vol ∈ Meas)

Proof of Theorem volmea
Dummy variables 𝑒 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmvolsal 42619 . . 3 dom vol ∈ SAlg
21a1i 11 . 2 (𝜑 → dom vol ∈ SAlg)
3 volf 24122 . . 3 vol:dom vol⟶(0[,]+∞)
43a1i 11 . 2 (𝜑 → vol:dom vol⟶(0[,]+∞))
5 vol0 42233 . . 3 (vol‘∅) = 0
65a1i 11 . 2 (𝜑 → (vol‘∅) = 0)
7 simp1 1130 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
8 simp2 1131 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶dom vol)
9 fveq2 6663 . . . . . 6 (𝑚 = 𝑛 → (𝑒𝑚) = (𝑒𝑛))
109cbvdisjv 5033 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) ↔ Disj 𝑛 ∈ ℕ (𝑒𝑛))
1110biimpri 230 . . . 4 (Disj 𝑛 ∈ ℕ (𝑒𝑛) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
12113ad2ant3 1129 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑚 ∈ ℕ (𝑒𝑚))
13 simp2 1131 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → 𝑒:ℕ⟶dom vol)
1410biimpi 218 . . . . 5 (Disj 𝑚 ∈ ℕ (𝑒𝑚) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
15143ad2ant3 1129 . . . 4 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
1613, 15voliunsge0 42745 . . 3 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑚 ∈ ℕ (𝑒𝑚)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
177, 8, 12, 16syl3anc 1365 . 2 ((𝜑𝑒:ℕ⟶dom vol ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (vol‘ 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝑒𝑛)))))
182, 4, 6, 17ismeannd 42739 1 (𝜑 → vol ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1081   = wceq 1530  wcel 2107  c0 4289   ciun 4910  Disj wdisj 5022  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7148  0cc0 10529  +∞cpnf 10664  cn 11630  [,]cicc 12733  volcvol 24056  SAlgcsalg 42583  Σ^csumge0 42634  Meascmea 42721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058  df-salg 42584  df-sumge0 42635  df-mea 42722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator