Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgdavw Structured version   Visualization version   GIF version

Theorem cbvitgdavw 36242
Description: Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvitgdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvitgdavw (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvitgdavw
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgdavw.1 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21fvoveq1d 7391 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) = (ℜ‘(𝐶 / (i↑𝑡))))
3 eleq1w 2811 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43adantl 481 . . . . . . . . 9 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
54anbi1d 631 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐴 ∧ 0 ≤ 𝑣)))
65ifbid 4508 . . . . . . 7 ((𝜑𝑥 = 𝑦) → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
72, 6csbeq12dv 3868 . . . . . 6 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
87cbvmptdavw 36228 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))
98fveq2d 6844 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
109oveq2d 7385 . . 3 (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1110sumeq2sdv 15645 . 2 (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
12 df-itg 25500 . 2 𝐴𝐵 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25500 . 2 𝐴𝐶 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1411, 12, 133eqtr4g 2789 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  csb 3859  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  ici 11046   · cmul 11049  cle 11185   / cdiv 11811  3c3 12218  ...cfz 13444  cexp 14002  cre 15039  Σcsu 15628  2citg2 25493  citg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seq 13943  df-sum 15629  df-itg 25500
This theorem is referenced by:  cbvditgdavw  36243
  Copyright terms: Public domain W3C validator