Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgdavw Structured version   Visualization version   GIF version

Theorem cbvitgdavw 36220
Description: Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvitgdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvitgdavw (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvitgdavw
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgdavw.1 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21fvoveq1d 7421 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) = (ℜ‘(𝐶 / (i↑𝑡))))
3 eleq1w 2816 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43adantl 481 . . . . . . . . 9 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
54anbi1d 631 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐴 ∧ 0 ≤ 𝑣)))
65ifbid 4522 . . . . . . 7 ((𝜑𝑥 = 𝑦) → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
72, 6csbeq12dv 3881 . . . . . 6 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
87cbvmptdavw 36206 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))
98fveq2d 6876 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
109oveq2d 7415 . . 3 (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1110sumeq2sdv 15706 . 2 (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
12 df-itg 25561 . 2 𝐴𝐵 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25561 . 2 𝐴𝐶 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1411, 12, 133eqtr4g 2794 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  csb 3872  ifcif 4498   class class class wbr 5116  cmpt 5198  cfv 6527  (class class class)co 7399  cr 11120  0cc0 11121  ici 11123   · cmul 11126  cle 11262   / cdiv 11886  3c3 12288  ...cfz 13513  cexp 14068  cre 15103  Σcsu 15689  2citg2 25554  citg 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-xp 5657  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-iota 6480  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-seq 14009  df-sum 15690  df-itg 25561
This theorem is referenced by:  cbvditgdavw  36221
  Copyright terms: Public domain W3C validator