Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgdavw Structured version   Visualization version   GIF version

Theorem cbvitgdavw 36239
Description: Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvitgdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvitgdavw (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvitgdavw
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgdavw.1 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21fvoveq1d 7465 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) = (ℜ‘(𝐶 / (i↑𝑡))))
3 eleq1w 2827 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43adantl 481 . . . . . . . . 9 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
54anbi1d 630 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐴 ∧ 0 ≤ 𝑣)))
65ifbid 4571 . . . . . . 7 ((𝜑𝑥 = 𝑦) → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
72, 6csbeq12dv 3930 . . . . . 6 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))
87cbvmptdavw 36225 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))
98fveq2d 6919 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
109oveq2d 7459 . . 3 (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1110sumeq2sdv 15745 . 2 (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
12 df-itg 25669 . 2 𝐴𝐵 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
13 df-itg 25669 . 2 𝐴𝐶 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑦𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1411, 12, 133eqtr4g 2805 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  csb 3921  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6568  (class class class)co 7443  cr 11177  0cc0 11178  ici 11180   · cmul 11183  cle 11319   / cdiv 11941  3c3 12343  ...cfz 13561  cexp 14106  cre 15140  Σcsu 15728  2citg2 25662  citg 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-seq 14047  df-sum 15729  df-itg 25669
This theorem is referenced by:  cbvditgdavw  36240
  Copyright terms: Public domain W3C validator