| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvitgdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvitgdavw | ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitgdavw.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
| 2 | 1 | fvoveq1d 7411 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (ℜ‘(𝐵 / (i↑𝑡))) = (ℜ‘(𝐶 / (i↑𝑡)))) |
| 3 | eleq1w 2812 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 5 | 4 | anbi1d 631 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣))) |
| 6 | 5 | ifbid 4514 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 7 | 2, 6 | csbeq12dv 3873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 7 | cbvmptdavw 36250 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 9 | 8 | fveq2d 6864 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 10 | 9 | oveq2d 7405 | . . 3 ⊢ (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 11 | 10 | sumeq2sdv 15675 | . 2 ⊢ (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 12 | df-itg 25530 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 13 | df-itg 25530 | . 2 ⊢ ∫𝐴𝐶 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 14 | 11, 12, 13 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3864 ifcif 4490 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 ici 11076 · cmul 11079 ≤ cle 11215 / cdiv 11841 3c3 12243 ...cfz 13474 ↑cexp 14032 ℜcre 15069 Σcsu 15658 ∫2citg2 25523 ∫citg 25525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-xp 5646 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-seq 13973 df-sum 15659 df-itg 25530 |
| This theorem is referenced by: cbvditgdavw 36265 |
| Copyright terms: Public domain | W3C validator |