| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgdavw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvitgdavw2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
| cbvitgdavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvitgdavw2 | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitgdavw2.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
| 2 | 1 | fvoveq1d 7371 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡)))) |
| 3 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 4 | cbvitgdavw2.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
| 5 | 3, 4 | eleq12d 2822 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 6 | 5 | anbi1d 631 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣))) |
| 7 | 6 | ifbid 4500 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 8 | 2, 7 | csbeq12dv 3860 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
| 9 | 8 | cbvmptdavw 36241 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
| 11 | 10 | oveq2d 7365 | . . 3 ⊢ (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 12 | 11 | sumeq2sdv 15610 | . 2 ⊢ (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
| 13 | df-itg 25522 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 14 | df-itg 25522 | . 2 ⊢ ∫𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⦋csb 3851 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 ici 11011 · cmul 11014 ≤ cle 11150 / cdiv 11777 3c3 12184 ...cfz 13410 ↑cexp 13968 ℜcre 15004 Σcsu 15593 ∫2citg2 25515 ∫citg 25517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seq 13909 df-sum 15594 df-itg 25522 |
| This theorem is referenced by: cbvditgdavw2 36272 |
| Copyright terms: Public domain | W3C validator |