Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvitgdavw2 Structured version   Visualization version   GIF version

Theorem cbvitgdavw2 36331
Description: Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvitgdavw2.1 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
cbvitgdavw2.2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvitgdavw2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvitgdavw2
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvitgdavw2.1 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
21fvoveq1d 7363 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡))))
3 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 = 𝑦) → 𝑥 = 𝑦)
4 cbvitgdavw2.2 . . . . . . . . . 10 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
53, 4eleq12d 2825 . . . . . . . . 9 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐵))
65anbi1d 631 . . . . . . . 8 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦𝐵 ∧ 0 ≤ 𝑣)))
76ifbid 4494 . . . . . . 7 ((𝜑𝑥 = 𝑦) → if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
82, 7csbeq12dv 3854 . . . . . 6 ((𝜑𝑥 = 𝑦) → (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))
98cbvmptdavw 36301 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))
109fveq2d 6821 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1110oveq2d 7357 . . 3 (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
1211sumeq2sdv 15605 . 2 (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))))
13 df-itg 25546 . 2 𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑡))) / 𝑣if((𝑥𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))))
14 df-itg 25546 . 2 𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑡))) / 𝑣if((𝑦𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))
1512, 13, 143eqtr4g 2791 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  csb 3845  ifcif 4470   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  ici 11003   · cmul 11006  cle 11142   / cdiv 11769  3c3 12176  ...cfz 13402  cexp 13963  cre 14999  Σcsu 15588  2citg2 25539  citg 25541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-iota 6432  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seq 13904  df-sum 15589  df-itg 25546
This theorem is referenced by:  cbvditgdavw2  36332
  Copyright terms: Public domain W3C validator