![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvitgdavw2 | Structured version Visualization version GIF version |
Description: Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvitgdavw2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
cbvitgdavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbvitgdavw2 | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvitgdavw2.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
2 | 1 | fvoveq1d 7465 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (ℜ‘(𝐶 / (i↑𝑡))) = (ℜ‘(𝐷 / (i↑𝑡)))) |
3 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
4 | cbvitgdavw2.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
5 | 3, 4 | eleq12d 2838 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
6 | 5 | anbi1d 630 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣) ↔ (𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣))) |
7 | 6 | ifbid 4571 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
8 | 2, 7 | csbeq12dv 3930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)) |
9 | 8 | cbvmptdavw 36225 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)) = (𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))) |
10 | 9 | fveq2d 6919 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0))) = (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) |
11 | 10 | oveq2d 7459 | . . 3 ⊢ (𝜑 → ((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = ((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
12 | 11 | sumeq2sdv 15745 | . 2 ⊢ (𝜑 → Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0))))) |
13 | df-itg 25669 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑡))) / 𝑣⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
14 | df-itg 25669 | . 2 ⊢ ∫𝐵𝐷 d𝑦 = Σ𝑡 ∈ (0...3)((i↑𝑡) · (∫2‘(𝑦 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑡))) / 𝑣⦌if((𝑦 ∈ 𝐵 ∧ 0 ≤ 𝑣), 𝑣, 0)))) | |
15 | 12, 13, 14 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6568 (class class class)co 7443 ℝcr 11177 0cc0 11178 ici 11180 · cmul 11183 ≤ cle 11319 / cdiv 11941 3c3 12343 ...cfz 13561 ↑cexp 14106 ℜcre 15140 Σcsu 15728 ∫2citg2 25662 ∫citg 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5701 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-iota 6520 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-seq 14047 df-sum 15729 df-itg 25669 |
This theorem is referenced by: cbvditgdavw2 36256 |
Copyright terms: Public domain | W3C validator |