![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvopab2 | Structured version Visualization version GIF version |
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvopab2.1 | ⊢ Ⅎ𝑧𝜑 |
cbvopab2.2 | ⊢ Ⅎ𝑦𝜓 |
cbvopab2.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab2 | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑧 𝑤 = ⟨𝑥, 𝑦⟩ | |
2 | cbvopab2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
3 | 1, 2 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤 = ⟨𝑥, 𝑧⟩ | |
5 | cbvopab2.2 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
6 | 4, 5 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑦(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓) |
7 | opeq2 4874 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩) | |
8 | 7 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑥, 𝑧⟩)) |
9 | cbvopab2.3 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓))) |
11 | 3, 6, 10 | cbvexv1 2337 | . . . 4 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)) |
12 | 11 | exbii 1849 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)) |
13 | 12 | abbii 2801 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)} |
14 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
15 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜓)} | |
16 | 13, 14, 15 | 3eqtr4i 2769 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∃wex 1780 Ⅎwnf 1784 {cab 2708 ⟨cop 4634 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 |
This theorem is referenced by: cbvoprab3 7503 |
Copyright terms: Public domain | W3C validator |