Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1c Structured version   Visualization version   GIF version

Theorem cdleme31sn1c 37630
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sn1c.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme31sn1c.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme31sn1c.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn1c.y 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme31sn1c.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
Assertion
Ref Expression
cdleme31sn1c ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠   𝐸,𝑠   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   ,𝑠   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑊,𝑠
Allowed substitution hints:   𝐵(𝑦,𝑡)   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑦,𝑡,𝑠)   𝐸(𝑦,𝑡)   𝐺(𝑦,𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   (𝑦,𝑡)   𝑁(𝑦,𝑡,𝑠)   𝑊(𝑦,𝑡)   𝑌(𝑦,𝑡,𝑠)

Proof of Theorem cdleme31sn1c
StepHypRef Expression
1 cdleme31sn1c.i . . 3 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
2 cdleme31sn1c.n . . 3 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
3 eqid 2824 . . 3 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
41, 2, 3cdleme31sn1 37623 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
5 cdleme31sn1c.g . . . . . . . . 9 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
6 cdleme31sn1c.y . . . . . . . . 9 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
75, 6cdleme31se 37624 . . . . . . . 8 (𝑅𝐴𝑅 / 𝑠𝐺 = 𝑌)
87adantr 484 . . . . . . 7 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝐺 = 𝑌)
98eqeq2d 2835 . . . . . 6 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦 = 𝑅 / 𝑠𝐺𝑦 = 𝑌))
109imbi2d 344 . . . . 5 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
1110ralbidv 3192 . . . 4 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
1211riotabidv 7110 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
13 cdleme31sn1c.c . . 3 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
1412, 13syl6eqr 2877 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = 𝐶)
154, 14eqtrd 2859 1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  csb 3867  ifcif 4451   class class class wbr 5053  crio 7107  (class class class)co 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-un 3925  df-in 3927  df-ss 3937  df-if 4452  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-br 5054  df-iota 6303  df-fv 6352  df-riota 7108  df-ov 7153
This theorem is referenced by:  cdlemefs32sn1aw  37656  cdleme43fsv1snlem  37662  cdleme41sn3a  37675  cdleme40m  37709  cdleme40n  37710
  Copyright terms: Public domain W3C validator