![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sn1c | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.) |
Ref | Expression |
---|---|
cdleme31sn1c.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sn1c.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
cdleme31sn1c.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
cdleme31sn1c.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sn1c.c | ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) |
Ref | Expression |
---|---|
cdleme31sn1c | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sn1c.i | . . 3 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) | |
2 | cdleme31sn1c.n | . . 3 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | |
3 | eqid 2737 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) | |
4 | 1, 2, 3 | cdleme31sn1 38873 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
5 | cdleme31sn1c.g | . . . . . . . . 9 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
6 | cdleme31sn1c.y | . . . . . . . . 9 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
7 | 5, 6 | cdleme31se 38874 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
8 | 7 | adantr 482 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
9 | 8 | eqeq2d 2748 | . . . . . 6 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑦 = ⦋𝑅 / 𝑠⦌𝐺 ↔ 𝑦 = 𝑌)) |
10 | 9 | imbi2d 341 | . . . . 5 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
11 | 10 | ralbidv 3175 | . . . 4 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
12 | 11 | riotabidv 7320 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
13 | cdleme31sn1c.c | . . 3 ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) | |
14 | 12, 13 | eqtr4di 2795 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = 𝐶) |
15 | 4, 14 | eqtrd 2777 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ⦋csb 3860 ifcif 4491 class class class wbr 5110 ℩crio 7317 (class class class)co 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-iota 6453 df-fv 6509 df-riota 7318 df-ov 7365 |
This theorem is referenced by: cdlemefs32sn1aw 38906 cdleme43fsv1snlem 38912 cdleme41sn3a 38925 cdleme40m 38959 cdleme40n 38960 |
Copyright terms: Public domain | W3C validator |