| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sn1c | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdleme31sn1c.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdleme31sn1c.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
| cdleme31sn1c.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
| cdleme31sn1c.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
| cdleme31sn1c.c | ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) |
| Ref | Expression |
|---|---|
| cdleme31sn1c | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme31sn1c.i | . . 3 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) | |
| 2 | cdleme31sn1c.n | . . 3 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | |
| 3 | eqid 2733 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) | |
| 4 | 1, 2, 3 | cdleme31sn1 40553 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
| 5 | cdleme31sn1c.g | . . . . . . . . 9 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 6 | cdleme31sn1c.y | . . . . . . . . 9 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
| 7 | 5, 6 | cdleme31se 40554 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
| 9 | 8 | eqeq2d 2744 | . . . . . 6 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑦 = ⦋𝑅 / 𝑠⦌𝐺 ↔ 𝑦 = 𝑌)) |
| 10 | 9 | imbi2d 340 | . . . . 5 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
| 11 | 10 | ralbidv 3156 | . . . 4 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
| 12 | 11 | riotabidv 7314 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
| 13 | cdleme31sn1c.c | . . 3 ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) | |
| 14 | 12, 13 | eqtr4di 2786 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = 𝐶) |
| 15 | 4, 14 | eqtrd 2768 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⦋csb 3846 ifcif 4476 class class class wbr 5095 ℩crio 7311 (class class class)co 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-riota 7312 df-ov 7358 |
| This theorem is referenced by: cdlemefs32sn1aw 40586 cdleme43fsv1snlem 40592 cdleme41sn3a 40605 cdleme40m 40639 cdleme40n 40640 |
| Copyright terms: Public domain | W3C validator |