Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1c Structured version   Visualization version   GIF version

Theorem cdleme31sn1c 39913
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sn1c.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme31sn1c.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme31sn1c.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn1c.y 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme31sn1c.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
Assertion
Ref Expression
cdleme31sn1c ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠   𝐸,𝑠   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   ,𝑠   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑊,𝑠
Allowed substitution hints:   𝐵(𝑦,𝑡)   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑦,𝑡,𝑠)   𝐸(𝑦,𝑡)   𝐺(𝑦,𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   (𝑦,𝑡)   𝑁(𝑦,𝑡,𝑠)   𝑊(𝑦,𝑡)   𝑌(𝑦,𝑡,𝑠)

Proof of Theorem cdleme31sn1c
StepHypRef Expression
1 cdleme31sn1c.i . . 3 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
2 cdleme31sn1c.n . . 3 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
3 eqid 2725 . . 3 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
41, 2, 3cdleme31sn1 39906 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
5 cdleme31sn1c.g . . . . . . . . 9 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
6 cdleme31sn1c.y . . . . . . . . 9 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
75, 6cdleme31se 39907 . . . . . . . 8 (𝑅𝐴𝑅 / 𝑠𝐺 = 𝑌)
87adantr 479 . . . . . . 7 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝐺 = 𝑌)
98eqeq2d 2736 . . . . . 6 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦 = 𝑅 / 𝑠𝐺𝑦 = 𝑌))
109imbi2d 339 . . . . 5 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
1110ralbidv 3168 . . . 4 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
1211riotabidv 7371 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
13 cdleme31sn1c.c . . 3 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
1412, 13eqtr4di 2783 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)) = 𝐶)
154, 14eqtrd 2765 1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  csb 3886  ifcif 4525   class class class wbr 5144  crio 7368  (class class class)co 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-iota 6495  df-fv 6551  df-riota 7369  df-ov 7416
This theorem is referenced by:  cdlemefs32sn1aw  39939  cdleme43fsv1snlem  39945  cdleme41sn3a  39958  cdleme40m  39992  cdleme40n  39993
  Copyright terms: Public domain W3C validator