Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sn1c | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 1-Mar-2013.) |
Ref | Expression |
---|---|
cdleme31sn1c.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sn1c.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
cdleme31sn1c.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
cdleme31sn1c.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sn1c.c | ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) |
Ref | Expression |
---|---|
cdleme31sn1c | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sn1c.i | . . 3 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) | |
2 | cdleme31sn1c.n | . . 3 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | |
3 | eqid 2738 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) | |
4 | 1, 2, 3 | cdleme31sn1 38395 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
5 | cdleme31sn1c.g | . . . . . . . . 9 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
6 | cdleme31sn1c.y | . . . . . . . . 9 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
7 | 5, 6 | cdleme31se 38396 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝐺 = 𝑌) |
9 | 8 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑦 = ⦋𝑅 / 𝑠⦌𝐺 ↔ 𝑦 = 𝑌)) |
10 | 9 | imbi2d 341 | . . . . 5 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
11 | 10 | ralbidv 3112 | . . . 4 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) ↔ ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
12 | 11 | riotabidv 7234 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌))) |
13 | cdleme31sn1c.c | . . 3 ⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝑌)) | |
14 | 12, 13 | eqtr4di 2796 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) = 𝐶) |
15 | 4, 14 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⦋csb 3832 ifcif 4459 class class class wbr 5074 ℩crio 7231 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-riota 7232 df-ov 7278 |
This theorem is referenced by: cdlemefs32sn1aw 38428 cdleme43fsv1snlem 38434 cdleme41sn3a 38447 cdleme40m 38481 cdleme40n 38482 |
Copyright terms: Public domain | W3C validator |