Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Structured version   Visualization version   GIF version

Theorem cdleme31sc 40493
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sc.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sc (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2895 . . 3 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
2 oveq1 7353 . . . 4 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
3 oveq2 7354 . . . . . 6 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
43oveq1d 7361 . . . . 5 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
54oveq2d 7362 . . . 4 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
62, 5oveq12d 7364 . . 3 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
71, 6csbiegf 3878 . 2 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
8 cdleme31sc.c . . 3 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
98csbeq2i 3853 . 2 𝑅 / 𝑠𝐶 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
10 cdleme31sc.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
117, 9, 103eqtr4g 2791 1 (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  csb 3845  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  cdleme31snd  40495  cdleme31sdnN  40496  cdlemefr44  40534  cdlemefr45e  40537  cdleme48fv  40608  cdleme46fvaw  40610  cdleme48bw  40611  cdleme46fsvlpq  40614  cdlemeg46fvcl  40615  cdlemeg49le  40620  cdlemeg46fjgN  40630  cdlemeg46rjgN  40631  cdlemeg46fjv  40632  cdleme48d  40644  cdlemeg49lebilem  40648  cdleme50eq  40650  cdleme50f  40651  cdlemg2jlemOLDN  40702  cdlemg2klem  40704
  Copyright terms: Public domain W3C validator