Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Structured version   Visualization version   GIF version

Theorem cdleme31sc 38660
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sc.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sc (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2905 . . 3 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
2 oveq1 7344 . . . 4 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
3 oveq2 7345 . . . . . 6 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
43oveq1d 7352 . . . . 5 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
54oveq2d 7353 . . . 4 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
62, 5oveq12d 7355 . . 3 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
71, 6csbiegf 3877 . 2 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
8 cdleme31sc.c . . 3 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
98csbeq2i 3851 . 2 𝑅 / 𝑠𝐶 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
10 cdleme31sc.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
117, 9, 103eqtr4g 2801 1 (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  csb 3843  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340
This theorem is referenced by:  cdleme31snd  38662  cdleme31sdnN  38663  cdlemefr44  38701  cdlemefr45e  38704  cdleme48fv  38775  cdleme46fvaw  38777  cdleme48bw  38778  cdleme46fsvlpq  38781  cdlemeg46fvcl  38782  cdlemeg49le  38787  cdlemeg46fjgN  38797  cdlemeg46rjgN  38798  cdlemeg46fjv  38799  cdleme48d  38811  cdlemeg49lebilem  38815  cdleme50eq  38817  cdleme50f  38818  cdlemg2jlemOLDN  38869  cdlemg2klem  38871
  Copyright terms: Public domain W3C validator