Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Structured version   Visualization version   GIF version

Theorem cdleme31sc 40341
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sc.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sc (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2909 . . 3 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
2 oveq1 7455 . . . 4 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
3 oveq2 7456 . . . . . 6 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
43oveq1d 7463 . . . . 5 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
54oveq2d 7464 . . . 4 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
62, 5oveq12d 7466 . . 3 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
71, 6csbiegf 3955 . 2 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
8 cdleme31sc.c . . 3 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
98csbeq2i 3929 . 2 𝑅 / 𝑠𝐶 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
10 cdleme31sc.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
117, 9, 103eqtr4g 2805 1 (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  csb 3921  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  cdleme31snd  40343  cdleme31sdnN  40344  cdlemefr44  40382  cdlemefr45e  40385  cdleme48fv  40456  cdleme46fvaw  40458  cdleme48bw  40459  cdleme46fsvlpq  40462  cdlemeg46fvcl  40463  cdlemeg49le  40468  cdlemeg46fjgN  40478  cdlemeg46rjgN  40479  cdlemeg46fjv  40480  cdleme48d  40492  cdlemeg49lebilem  40496  cdleme50eq  40498  cdleme50f  40499  cdlemg2jlemOLDN  40550  cdlemg2klem  40552
  Copyright terms: Public domain W3C validator