Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sc Structured version   Visualization version   GIF version

Theorem cdleme31sc 40378
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sc.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sc.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sc (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme31sc
StepHypRef Expression
1 nfcvd 2892 . . 3 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
2 oveq1 7394 . . . 4 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
3 oveq2 7395 . . . . . 6 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
43oveq1d 7402 . . . . 5 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
54oveq2d 7403 . . . 4 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
62, 5oveq12d 7405 . . 3 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
71, 6csbiegf 3895 . 2 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
8 cdleme31sc.c . . 3 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
98csbeq2i 3870 . 2 𝑅 / 𝑠𝐶 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
10 cdleme31sc.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
117, 9, 103eqtr4g 2789 1 (𝑅𝐴𝑅 / 𝑠𝐶 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3862  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  cdleme31snd  40380  cdleme31sdnN  40381  cdlemefr44  40419  cdlemefr45e  40422  cdleme48fv  40493  cdleme46fvaw  40495  cdleme48bw  40496  cdleme46fsvlpq  40499  cdlemeg46fvcl  40500  cdlemeg49le  40505  cdlemeg46fjgN  40515  cdlemeg46rjgN  40516  cdlemeg46fjv  40517  cdleme48d  40529  cdlemeg49lebilem  40533  cdleme50eq  40535  cdleme50f  40536  cdlemg2jlemOLDN  40587  cdlemg2klem  40589
  Copyright terms: Public domain W3C validator