Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sc | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) |
Ref | Expression |
---|---|
cdleme31sc.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme31sc.x | ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31sc | ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐶 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2907 | . . 3 ⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) | |
2 | oveq1 7262 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝑠 ∨ 𝑈) = (𝑅 ∨ 𝑈)) | |
3 | oveq2 7263 | . . . . . 6 ⊢ (𝑠 = 𝑅 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑅)) | |
4 | 3 | oveq1d 7270 | . . . . 5 ⊢ (𝑠 = 𝑅 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
5 | 4 | oveq2d 7271 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
6 | 2, 5 | oveq12d 7273 | . . 3 ⊢ (𝑠 = 𝑅 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
7 | 1, 6 | csbiegf 3862 | . 2 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
8 | cdleme31sc.c | . . 3 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
9 | 8 | csbeq2i 3836 | . 2 ⊢ ⦋𝑅 / 𝑠⦌𝐶 = ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
10 | cdleme31sc.x | . 2 ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
11 | 7, 9, 10 | 3eqtr4g 2804 | 1 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐶 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⦋csb 3828 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cdleme31snd 38327 cdleme31sdnN 38328 cdlemefr44 38366 cdlemefr45e 38369 cdleme48fv 38440 cdleme46fvaw 38442 cdleme48bw 38443 cdleme46fsvlpq 38446 cdlemeg46fvcl 38447 cdlemeg49le 38452 cdlemeg46fjgN 38462 cdlemeg46rjgN 38463 cdlemeg46fjv 38464 cdleme48d 38476 cdlemeg49lebilem 38480 cdleme50eq 38482 cdleme50f 38483 cdlemg2jlemOLDN 38534 cdlemg2klem 38536 |
Copyright terms: Public domain | W3C validator |