| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnltm1 | Structured version Visualization version GIF version | ||
| Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| chnltm1.2 | ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) |
| Ref | Expression |
|---|---|
| chnltm1 | ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7417 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1))) | |
| 2 | fveq2 6865 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘𝑛) = (𝐶‘𝑁)) | |
| 3 | 1, 2 | breq12d 5128 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶‘𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁))) |
| 4 | chnwrd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 5 | ischn 32940 | . . . 4 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛)) |
| 8 | chnltm1.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) | |
| 9 | 3, 7, 8 | rspcdva 3598 | 1 ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∖ cdif 3919 {csn 4597 class class class wbr 5115 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 − cmin 11423 Word cword 14488 Chaincchn 32938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-dm 5656 df-iota 6472 df-fv 6527 df-ov 7397 df-chn 32939 |
| This theorem is referenced by: pfxchn 32943 |
| Copyright terms: Public domain | W3C validator |