![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > chnltm1 | Structured version Visualization version GIF version |
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
chnltm1.2 | ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) |
Ref | Expression |
---|---|
chnltm1 | ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7471 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1))) | |
2 | fveq2 6920 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘𝑛) = (𝐶‘𝑁)) | |
3 | 1, 2 | breq12d 5179 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶‘𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁))) |
4 | chnwrd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
5 | ischn 32979 | . . . 4 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛)) |
8 | chnltm1.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) | |
9 | 3, 7, 8 | rspcdva 3636 | 1 ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 {csn 4648 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 − cmin 11520 Word cword 14562 Chaincchn 32977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-chn 32978 |
This theorem is referenced by: pfxchn 32982 |
Copyright terms: Public domain | W3C validator |