Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnltm1 Structured version   Visualization version   GIF version

Theorem chnltm1 32907
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
chnltm1.2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
Assertion
Ref Expression
chnltm1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))

Proof of Theorem chnltm1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7392 . . 3 (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1)))
2 fveq2 6840 . . 3 (𝑛 = 𝑁 → (𝐶𝑛) = (𝐶𝑁))
31, 2breq12d 5115 . 2 (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶𝑁)))
4 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
5 ischn 32905 . . . 4 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
64, 5sylib 218 . . 3 (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
76simprd 495 . 2 (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛))
8 chnltm1.2 . 2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
93, 7, 8rspcdva 3586 1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3908  {csn 4585   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  cmin 11381  Word cword 14454  Chaincchn 32903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-dm 5641  df-iota 6452  df-fv 6507  df-ov 7372  df-chn 32904
This theorem is referenced by:  pfxchn  32908
  Copyright terms: Public domain W3C validator