| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chnltm1 | Structured version Visualization version GIF version | ||
| Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) |
| chnltm1.2 | ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) |
| Ref | Expression |
|---|---|
| chnltm1 | ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 7369 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1))) | |
| 2 | fveq2 6822 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘𝑛) = (𝐶‘𝑁)) | |
| 3 | 1, 2 | breq12d 5102 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶‘𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁))) |
| 4 | chnwrd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) | |
| 5 | ischn 18513 | . . . 4 ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
| 7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛)) |
| 8 | chnltm1.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) | |
| 9 | 3, 7, 8 | rspcdva 3573 | 1 ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 {csn 4573 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 − cmin 11344 Word cword 14420 Chain cchn 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 df-chn 18512 |
| This theorem is referenced by: pfxchn 18516 chnccat 18532 chnrev 18533 |
| Copyright terms: Public domain | W3C validator |