![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > chnltm1 | Structured version Visualization version GIF version |
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
chnltm1.2 | ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) |
Ref | Expression |
---|---|
chnltm1 | ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7436 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1))) | |
2 | fveq2 6890 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐶‘𝑛) = (𝐶‘𝑁)) | |
3 | 1, 2 | breq12d 5156 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶‘𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁))) |
4 | chnwrd.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
5 | ischn 32876 | . . . 4 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) |
7 | 6 | simprd 494 | . 2 ⊢ (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛)) |
8 | chnltm1.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) | |
9 | 3, 7, 8 | rspcdva 3608 | 1 ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3943 {csn 4623 class class class wbr 5143 dom cdm 5672 ‘cfv 6543 (class class class)co 7413 0cc0 11146 1c1 11147 − cmin 11482 Word cword 14514 Chaincchn 32874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-dm 5682 df-iota 6495 df-fv 6551 df-ov 7416 df-chn 32875 |
This theorem is referenced by: pfxchn 32879 |
Copyright terms: Public domain | W3C validator |