Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnltm1 Structured version   Visualization version   GIF version

Theorem chnltm1 32983
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
chnltm1.2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
Assertion
Ref Expression
chnltm1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))

Proof of Theorem chnltm1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7454 . . 3 (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1)))
2 fveq2 6907 . . 3 (𝑛 = 𝑁 → (𝐶𝑛) = (𝐶𝑁))
31, 2breq12d 5161 . 2 (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶𝑁)))
4 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
5 ischn 32981 . . . 4 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
64, 5sylib 218 . . 3 (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
76simprd 495 . 2 (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛))
8 chnltm1.2 . 2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
93, 7, 8rspcdva 3623 1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cdif 3960  {csn 4631   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  cmin 11490  Word cword 14549  Chaincchn 32979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-chn 32980
This theorem is referenced by:  pfxchn  32984
  Copyright terms: Public domain W3C validator