Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnltm1 Structured version   Visualization version   GIF version

Theorem chnltm1 32934
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
chnltm1.2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
Assertion
Ref Expression
chnltm1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))

Proof of Theorem chnltm1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7410 . . 3 (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1)))
2 fveq2 6858 . . 3 (𝑛 = 𝑁 → (𝐶𝑛) = (𝐶𝑁))
31, 2breq12d 5120 . 2 (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶𝑁)))
4 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
5 ischn 32932 . . . 4 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
64, 5sylib 218 . . 3 (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
76simprd 495 . 2 (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛))
8 chnltm1.2 . 2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
93, 7, 8rspcdva 3589 1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3911  {csn 4589   class class class wbr 5107  dom cdm 5638  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  cmin 11405  Word cword 14478  Chaincchn 32930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-chn 32931
This theorem is referenced by:  pfxchn  32935
  Copyright terms: Public domain W3C validator