Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnltm1 Structured version   Visualization version   GIF version

Theorem chnltm1 32878
Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
chnltm1.2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
Assertion
Ref Expression
chnltm1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))

Proof of Theorem chnltm1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7436 . . 3 (𝑛 = 𝑁 → (𝐶‘(𝑛 − 1)) = (𝐶‘(𝑁 − 1)))
2 fveq2 6890 . . 3 (𝑛 = 𝑁 → (𝐶𝑛) = (𝐶𝑁))
31, 2breq12d 5156 . 2 (𝑛 = 𝑁 → ((𝐶‘(𝑛 − 1)) < (𝐶𝑛) ↔ (𝐶‘(𝑁 − 1)) < (𝐶𝑁)))
4 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
5 ischn 32876 . . . 4 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
64, 5sylib 217 . . 3 (𝜑 → (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
76simprd 494 . 2 (𝜑 → ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛))
8 chnltm1.2 . 2 (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))
93, 7, 8rspcdva 3608 1 (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  cdif 3943  {csn 4623   class class class wbr 5143  dom cdm 5672  cfv 6543  (class class class)co 7413  0cc0 11146  1c1 11147  cmin 11482  Word cword 14514  Chaincchn 32874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-dm 5682  df-iota 6495  df-fv 6551  df-ov 7416  df-chn 32875
This theorem is referenced by:  pfxchn  32879
  Copyright terms: Public domain W3C validator