| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnwrd | Structured version Visualization version GIF version | ||
| Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| Ref | Expression |
|---|---|
| chnwrd | ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnwrd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 2 | ischn 32938 | . . 3 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝐶 ∈ ( < Chain𝐴) → 𝐶 ∈ Word 𝐴) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3913 {csn 4591 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 − cmin 11411 Word cword 14484 Chaincchn 32936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-dm 5650 df-iota 6466 df-fv 6521 df-chn 32937 |
| This theorem is referenced by: pfxchn 32941 chnind 32943 chnub 32944 chnlt 32945 chnccats1 32947 fldext2chn 33724 constrextdg2lem 33744 constrext2chnlem 33746 |
| Copyright terms: Public domain | W3C validator |