| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chnwrd | Structured version Visualization version GIF version | ||
| Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) |
| Ref | Expression |
|---|---|
| chnwrd | ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnwrd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ ( < Chain 𝐴)) | |
| 2 | ischn 18513 | . . 3 ⊢ (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝐶 ∈ ( < Chain 𝐴) → 𝐶 ∈ Word 𝐴) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 {csn 4573 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 − cmin 11344 Word cword 14420 Chain cchn 18511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 df-chn 18512 |
| This theorem is referenced by: pfxchn 18516 chnexg 18524 chnind 18527 chnub 18528 chnlt 18529 chnccats1 18531 chnccat 18532 chnrev 18533 chnflenfi 18534 chnf 18535 chnpolleha 18538 chnpolfz 18539 fldext2chn 33741 constrextdg2lem 33761 constrext2chnlem 33763 |
| Copyright terms: Public domain | W3C validator |