| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > chnwrd | Structured version Visualization version GIF version | ||
| Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
| Ref | Expression |
|---|---|
| chnwrd | ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chnwrd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
| 2 | ischn 32940 | . . 3 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
| 3 | 2 | simplbi 497 | . 2 ⊢ (𝐶 ∈ ( < Chain𝐴) → 𝐶 ∈ Word 𝐴) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 ∖ cdif 3928 {csn 4606 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 − cmin 11474 Word cword 14535 Chaincchn 32938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-dm 5675 df-iota 6494 df-fv 6549 df-chn 32939 |
| This theorem is referenced by: pfxchn 32943 chnind 32945 chnub 32946 chnlt 32947 chnccats1 32949 fldext2chn 33713 constrextdg2lem 33733 constrext2chnlem 33735 |
| Copyright terms: Public domain | W3C validator |