![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > chnwrd | Structured version Visualization version GIF version |
Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
Ref | Expression |
---|---|
chnwrd | ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chnwrd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
2 | ischn 32879 | . . 3 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
3 | 2 | simplbi 496 | . 2 ⊢ (𝐶 ∈ ( < Chain𝐴) → 𝐶 ∈ Word 𝐴) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3943 {csn 4623 class class class wbr 5145 dom cdm 5674 ‘cfv 6546 (class class class)co 7416 0cc0 11149 1c1 11150 − cmin 11485 Word cword 14517 Chaincchn 32877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-dm 5684 df-iota 6498 df-fv 6554 df-chn 32878 |
This theorem is referenced by: pfxchn 32882 chnind 32883 chnub 32884 chnlt 32885 fldext2chn 33601 |
Copyright terms: Public domain | W3C validator |