![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > chnwrd | Structured version Visualization version GIF version |
Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
chnwrd.1 | ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
Ref | Expression |
---|---|
chnwrd | ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chnwrd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) | |
2 | ischn 32971 | . . 3 ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | |
3 | 2 | simplbi 497 | . 2 ⊢ (𝐶 ∈ ( < Chain𝐴) → 𝐶 ∈ Word 𝐴) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 {csn 4648 class class class wbr 5166 dom cdm 5695 ‘cfv 6568 (class class class)co 7443 0cc0 11178 1c1 11179 − cmin 11514 Word cword 14556 Chaincchn 32969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5705 df-iota 6520 df-fv 6576 df-chn 32970 |
This theorem is referenced by: pfxchn 32974 chnind 32975 chnub 32976 chnlt 32977 fldext2chn 33711 |
Copyright terms: Public domain | W3C validator |