Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chnwrd Structured version   Visualization version   GIF version

Theorem chnwrd 32880
Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypothesis
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
Assertion
Ref Expression
chnwrd (𝜑𝐶 ∈ Word 𝐴)

Proof of Theorem chnwrd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 chnwrd.1 . 2 (𝜑𝐶 ∈ ( < Chain𝐴))
2 ischn 32879 . . 3 (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
32simplbi 496 . 2 (𝐶 ∈ ( < Chain𝐴) → 𝐶 ∈ Word 𝐴)
41, 3syl 17 1 (𝜑𝐶 ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wral 3051  cdif 3943  {csn 4623   class class class wbr 5145  dom cdm 5674  cfv 6546  (class class class)co 7416  0cc0 11149  1c1 11150  cmin 11485  Word cword 14517  Chaincchn 32877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-dm 5684  df-iota 6498  df-fv 6554  df-chn 32878
This theorem is referenced by:  pfxchn  32882  chnind  32883  chnub  32884  chnlt  32885  fldext2chn  33601
  Copyright terms: Public domain W3C validator