MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chnwrd Structured version   Visualization version   GIF version

Theorem chnwrd 18514
Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypothesis
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain 𝐴))
Assertion
Ref Expression
chnwrd (𝜑𝐶 ∈ Word 𝐴)

Proof of Theorem chnwrd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 chnwrd.1 . 2 (𝜑𝐶 ∈ ( < Chain 𝐴))
2 ischn 18513 . . 3 (𝐶 ∈ ( < Chain 𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
32simplbi 497 . 2 (𝐶 ∈ ( < Chain 𝐴) → 𝐶 ∈ Word 𝐴)
41, 3syl 17 1 (𝜑𝐶 ∈ Word 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  cdif 3894  {csn 4573   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  cmin 11344  Word cword 14420   Chain cchn 18511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-dm 5624  df-iota 6437  df-fv 6489  df-chn 18512
This theorem is referenced by:  pfxchn  18516  chnexg  18524  chnind  18527  chnub  18528  chnlt  18529  chnccats1  18531  chnccat  18532  chnrev  18533  chnflenfi  18534  chnf  18535  chnpolleha  18538  chnpolfz  18539  fldext2chn  33741  constrextdg2lem  33761  constrext2chnlem  33763
  Copyright terms: Public domain W3C validator