Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxchn Structured version   Visualization version   GIF version

Theorem pfxchn 32882
Description: A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
pfxchn.2 (𝜑𝐿 ∈ (0...(♯‘𝐶)))
Assertion
Ref Expression
pfxchn (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴))

Proof of Theorem pfxchn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
21chnwrd 32880 . . 3 (𝜑𝐶 ∈ Word 𝐴)
3 pfxcl 14680 . . 3 (𝐶 ∈ Word 𝐴 → (𝐶 prefix 𝐿) ∈ Word 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐶 prefix 𝐿) ∈ Word 𝐴)
51adantr 479 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ ( < Chain𝐴))
6 pfxchn.2 . . . . . . . . . 10 (𝜑𝐿 ∈ (0...(♯‘𝐶)))
76adantr 479 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ (0...(♯‘𝐶)))
8 elfzuz3 13546 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝐶)) → (♯‘𝐶) ∈ (ℤ𝐿))
9 fzoss2 13708 . . . . . . . . 9 ((♯‘𝐶) ∈ (ℤ𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝐶)))
107, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^𝐿) ⊆ (0..^(♯‘𝐶)))
11 simpr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0}))
1211eldifad 3958 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom (𝐶 prefix 𝐿))
132adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ Word 𝐴)
14 pfxlen 14686 . . . . . . . . . . . . 13 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix 𝐿)) = 𝐿)
1513, 7, 14syl2anc 582 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘(𝐶 prefix 𝐿)) = 𝐿)
1615eqcomd 2732 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 = (♯‘(𝐶 prefix 𝐿)))
174adantr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿) ∈ Word 𝐴)
1816, 17wrdfd 32800 . . . . . . . . . 10 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿):(0..^𝐿)⟶𝐴)
1918fdmd 6730 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom (𝐶 prefix 𝐿) = (0..^𝐿))
2012, 19eleqtrd 2828 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^𝐿))
2110, 20sseldd 3979 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^(♯‘𝐶)))
22 eqidd 2727 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘𝐶) = (♯‘𝐶))
2322, 13wrdfd 32800 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶:(0..^(♯‘𝐶))⟶𝐴)
2423fdmd 6730 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom 𝐶 = (0..^(♯‘𝐶)))
2521, 24eleqtrrd 2829 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom 𝐶)
26 eldifsni 4789 . . . . . . 7 (𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0}) → 𝑛 ≠ 0)
2711, 26syl 17 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ≠ 0)
2825, 27eldifsnd 4786 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom 𝐶 ∖ {0}))
295, 28chnltm1 32881 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶‘(𝑛 − 1)) < (𝐶𝑛))
307elfzelzd 13550 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ ℤ)
31 fzossrbm1 13709 . . . . . . 7 (𝐿 ∈ ℤ → (0..^(𝐿 − 1)) ⊆ (0..^𝐿))
3230, 31syl 17 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^(𝐿 − 1)) ⊆ (0..^𝐿))
33 fzom1ne1 32706 . . . . . . 7 ((𝑛 ∈ (0..^𝐿) ∧ 𝑛 ≠ 0) → (𝑛 − 1) ∈ (0..^(𝐿 − 1)))
3420, 27, 33syl2anc 582 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^(𝐿 − 1)))
3532, 34sseldd 3979 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^𝐿))
36 pfxfv 14685 . . . . 5 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶)) ∧ (𝑛 − 1) ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
3713, 7, 35, 36syl3anc 1368 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
38 pfxfv 14685 . . . . 5 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶)) ∧ 𝑛 ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶𝑛))
3913, 7, 20, 38syl3anc 1368 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶𝑛))
4029, 37, 393brtr4d 5177 . . 3 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛))
4140ralrimiva 3136 . 2 (𝜑 → ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛))
42 ischn 32879 . 2 ((𝐶 prefix 𝐿) ∈ ( < Chain𝐴) ↔ ((𝐶 prefix 𝐿) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛)))
434, 41, 42sylanbrc 581 1 (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  cdif 3943  wss 3946  {csn 4623   class class class wbr 5145  dom cdm 5674  cfv 6546  (class class class)co 7416  0cc0 11149  1c1 11150  cmin 11485  cz 12604  cuz 12868  ...cfz 13532  ..^cfzo 13675  chash 14342  Word cword 14517   prefix cpfx 14673  Chaincchn 32877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-hash 14343  df-word 14518  df-substr 14644  df-pfx 14674  df-chn 32878
This theorem is referenced by:  chnlt  32885
  Copyright terms: Public domain W3C validator