Step | Hyp | Ref
| Expression |
1 | | chnwrd.1 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) |
2 | 1 | chnwrd 32880 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Word 𝐴) |
3 | | pfxcl 14680 |
. . 3
⊢ (𝐶 ∈ Word 𝐴 → (𝐶 prefix 𝐿) ∈ Word 𝐴) |
4 | 2, 3 | syl 17 |
. 2
⊢ (𝜑 → (𝐶 prefix 𝐿) ∈ Word 𝐴) |
5 | 1 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ ( < Chain𝐴)) |
6 | | pfxchn.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝐶))) |
7 | 6 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ (0...(♯‘𝐶))) |
8 | | elfzuz3 13546 |
. . . . . . . . 9
⊢ (𝐿 ∈
(0...(♯‘𝐶))
→ (♯‘𝐶)
∈ (ℤ≥‘𝐿)) |
9 | | fzoss2 13708 |
. . . . . . . . 9
⊢
((♯‘𝐶)
∈ (ℤ≥‘𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝐶))) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^𝐿) ⊆
(0..^(♯‘𝐶))) |
11 | | simpr 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) |
12 | 11 | eldifad 3958 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom (𝐶 prefix 𝐿)) |
13 | 2 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ Word 𝐴) |
14 | | pfxlen 14686 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix 𝐿)) = 𝐿) |
15 | 13, 7, 14 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘(𝐶 prefix 𝐿)) = 𝐿) |
16 | 15 | eqcomd 2732 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 = (♯‘(𝐶 prefix 𝐿))) |
17 | 4 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿) ∈ Word 𝐴) |
18 | 16, 17 | wrdfd 32800 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿):(0..^𝐿)⟶𝐴) |
19 | 18 | fdmd 6730 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom (𝐶 prefix 𝐿) = (0..^𝐿)) |
20 | 12, 19 | eleqtrd 2828 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^𝐿)) |
21 | 10, 20 | sseldd 3979 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^(♯‘𝐶))) |
22 | | eqidd 2727 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘𝐶) = (♯‘𝐶)) |
23 | 22, 13 | wrdfd 32800 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶:(0..^(♯‘𝐶))⟶𝐴) |
24 | 23 | fdmd 6730 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom 𝐶 = (0..^(♯‘𝐶))) |
25 | 21, 24 | eleqtrrd 2829 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom 𝐶) |
26 | | eldifsni 4789 |
. . . . . . 7
⊢ (𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0}) → 𝑛 ≠ 0) |
27 | 11, 26 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ≠ 0) |
28 | 25, 27 | eldifsnd 4786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom 𝐶 ∖ {0})) |
29 | 5, 28 | chnltm1 32881 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶‘(𝑛 − 1)) < (𝐶‘𝑛)) |
30 | 7 | elfzelzd 13550 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ ℤ) |
31 | | fzossrbm1 13709 |
. . . . . . 7
⊢ (𝐿 ∈ ℤ →
(0..^(𝐿 − 1)) ⊆
(0..^𝐿)) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^(𝐿 − 1)) ⊆ (0..^𝐿)) |
33 | | fzom1ne1 32706 |
. . . . . . 7
⊢ ((𝑛 ∈ (0..^𝐿) ∧ 𝑛 ≠ 0) → (𝑛 − 1) ∈ (0..^(𝐿 − 1))) |
34 | 20, 27, 33 | syl2anc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^(𝐿 − 1))) |
35 | 32, 34 | sseldd 3979 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^𝐿)) |
36 | | pfxfv 14685 |
. . . . 5
⊢ ((𝐶 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝐶)) ∧ (𝑛 − 1) ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) |
37 | 13, 7, 35, 36 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1))) |
38 | | pfxfv 14685 |
. . . . 5
⊢ ((𝐶 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝐶)) ∧ 𝑛 ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶‘𝑛)) |
39 | 13, 7, 20, 38 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶‘𝑛)) |
40 | 29, 37, 39 | 3brtr4d 5177 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛)) |
41 | 40 | ralrimiva 3136 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛)) |
42 | | ischn 32879 |
. 2
⊢ ((𝐶 prefix 𝐿) ∈ ( < Chain𝐴) ↔ ((𝐶 prefix 𝐿) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛))) |
43 | 4, 41, 42 | sylanbrc 581 |
1
⊢ (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴)) |