Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxchn Structured version   Visualization version   GIF version

Theorem pfxchn 32989
Description: A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
chnwrd.1 (𝜑𝐶 ∈ ( < Chain𝐴))
pfxchn.2 (𝜑𝐿 ∈ (0...(♯‘𝐶)))
Assertion
Ref Expression
pfxchn (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴))

Proof of Theorem pfxchn
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 chnwrd.1 . . . 4 (𝜑𝐶 ∈ ( < Chain𝐴))
21chnwrd 32987 . . 3 (𝜑𝐶 ∈ Word 𝐴)
3 pfxcl 14695 . . 3 (𝐶 ∈ Word 𝐴 → (𝐶 prefix 𝐿) ∈ Word 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐶 prefix 𝐿) ∈ Word 𝐴)
51adantr 480 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ ( < Chain𝐴))
6 pfxchn.2 . . . . . . . . . 10 (𝜑𝐿 ∈ (0...(♯‘𝐶)))
76adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ (0...(♯‘𝐶)))
8 elfzuz3 13538 . . . . . . . . 9 (𝐿 ∈ (0...(♯‘𝐶)) → (♯‘𝐶) ∈ (ℤ𝐿))
9 fzoss2 13704 . . . . . . . . 9 ((♯‘𝐶) ∈ (ℤ𝐿) → (0..^𝐿) ⊆ (0..^(♯‘𝐶)))
107, 8, 93syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^𝐿) ⊆ (0..^(♯‘𝐶)))
11 simpr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0}))
1211eldifad 3938 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom (𝐶 prefix 𝐿))
132adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶 ∈ Word 𝐴)
14 pfxlen 14701 . . . . . . . . . . . . 13 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶))) → (♯‘(𝐶 prefix 𝐿)) = 𝐿)
1513, 7, 14syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘(𝐶 prefix 𝐿)) = 𝐿)
1615eqcomd 2741 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 = (♯‘(𝐶 prefix 𝐿)))
174adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿) ∈ Word 𝐴)
1816, 17wrdfd 14537 . . . . . . . . . 10 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶 prefix 𝐿):(0..^𝐿)⟶𝐴)
1918fdmd 6716 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom (𝐶 prefix 𝐿) = (0..^𝐿))
2012, 19eleqtrd 2836 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^𝐿))
2110, 20sseldd 3959 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (0..^(♯‘𝐶)))
22 eqidd 2736 . . . . . . . . 9 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (♯‘𝐶) = (♯‘𝐶))
2322, 13wrdfd 14537 . . . . . . . 8 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐶:(0..^(♯‘𝐶))⟶𝐴)
2423fdmd 6716 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → dom 𝐶 = (0..^(♯‘𝐶)))
2521, 24eleqtrrd 2837 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ dom 𝐶)
26 eldifsni 4766 . . . . . . 7 (𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0}) → 𝑛 ≠ 0)
2711, 26syl 17 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ≠ 0)
2825, 27eldifsnd 4763 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝑛 ∈ (dom 𝐶 ∖ {0}))
295, 28chnltm1 32988 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝐶‘(𝑛 − 1)) < (𝐶𝑛))
307elfzelzd 13542 . . . . . . 7 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → 𝐿 ∈ ℤ)
31 fzossrbm1 13705 . . . . . . 7 (𝐿 ∈ ℤ → (0..^(𝐿 − 1)) ⊆ (0..^𝐿))
3230, 31syl 17 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (0..^(𝐿 − 1)) ⊆ (0..^𝐿))
33 fzom1ne1 32778 . . . . . . 7 ((𝑛 ∈ (0..^𝐿) ∧ 𝑛 ≠ 0) → (𝑛 − 1) ∈ (0..^(𝐿 − 1)))
3420, 27, 33syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^(𝐿 − 1)))
3532, 34sseldd 3959 . . . . 5 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → (𝑛 − 1) ∈ (0..^𝐿))
36 pfxfv 14700 . . . . 5 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶)) ∧ (𝑛 − 1) ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
3713, 7, 35, 36syl3anc 1373 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) = (𝐶‘(𝑛 − 1)))
38 pfxfv 14700 . . . . 5 ((𝐶 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝐶)) ∧ 𝑛 ∈ (0..^𝐿)) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶𝑛))
3913, 7, 20, 38syl3anc 1373 . . . 4 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘𝑛) = (𝐶𝑛))
4029, 37, 393brtr4d 5151 . . 3 ((𝜑𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})) → ((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛))
4140ralrimiva 3132 . 2 (𝜑 → ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛))
42 ischn 32986 . 2 ((𝐶 prefix 𝐿) ∈ ( < Chain𝐴) ↔ ((𝐶 prefix 𝐿) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (𝐶 prefix 𝐿) ∖ {0})((𝐶 prefix 𝐿)‘(𝑛 − 1)) < ((𝐶 prefix 𝐿)‘𝑛)))
434, 41, 42sylanbrc 583 1 (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  cmin 11466  cz 12588  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   prefix cpfx 14688  Chaincchn 32984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-substr 14659  df-pfx 14689  df-chn 32985
This theorem is referenced by:  chnlt  32993
  Copyright terms: Public domain W3C validator