MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chnrss Structured version   Visualization version   GIF version

Theorem chnrss 18513
Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026.)
Assertion
Ref Expression
chnrss ( <𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴))

Proof of Theorem chnrss
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5133 . . . . 5 ( <𝑅 → ((𝑥‘(𝑐 − 1)) < (𝑥𝑐) → (𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
21ralimdv 3144 . . . 4 ( <𝑅 → (∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐) → ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
32anim2d 612 . . 3 ( <𝑅 → ((𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐)) → (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐))))
4 ischn 18505 . . 3 (𝑥 ∈ ( < Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐)))
5 ischn 18505 . . 3 (𝑥 ∈ (𝑅 Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
63, 4, 53imtr4g 296 . 2 ( <𝑅 → (𝑥 ∈ ( < Chain 𝐴) → 𝑥 ∈ (𝑅 Chain 𝐴)))
76ssrdv 3938 1 ( <𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  wral 3045  cdif 3897  wss 3900  {csn 4574   class class class wbr 5089  dom cdm 5614  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  cmin 11336  Word cword 14412   Chain cchn 18503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-dm 5624  df-iota 6433  df-fv 6485  df-chn 18504
This theorem is referenced by:  chnrdss  18515
  Copyright terms: Public domain W3C validator