MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chnrss Structured version   Visualization version   GIF version

Theorem chnrss 18527
Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026.)
Assertion
Ref Expression
chnrss ( <𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴))

Proof of Theorem chnrss
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5137 . . . . 5 ( <𝑅 → ((𝑥‘(𝑐 − 1)) < (𝑥𝑐) → (𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
21ralimdv 3146 . . . 4 ( <𝑅 → (∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐) → ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
32anim2d 612 . . 3 ( <𝑅 → ((𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐)) → (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐))))
4 ischn 18519 . . 3 (𝑥 ∈ ( < Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥𝑐)))
5 ischn 18519 . . 3 (𝑥 ∈ (𝑅 Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥𝑐)))
63, 4, 53imtr4g 296 . 2 ( <𝑅 → (𝑥 ∈ ( < Chain 𝐴) → 𝑥 ∈ (𝑅 Chain 𝐴)))
76ssrdv 3935 1 ( <𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  cdif 3894  wss 3897  {csn 4575   class class class wbr 5093  dom cdm 5619  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013  cmin 11350  Word cword 14426   Chain cchn 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-dm 5629  df-iota 6443  df-fv 6495  df-chn 18518
This theorem is referenced by:  chnrdss  18529
  Copyright terms: Public domain W3C validator