| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chnrss | Structured version Visualization version GIF version | ||
| Description: Chains under a relation are also chains under any superset relation. (Contributed by Ender Ting, 20-Jan-2026.) |
| Ref | Expression |
|---|---|
| chnrss | ⊢ ( < ⊆ 𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5133 | . . . . 5 ⊢ ( < ⊆ 𝑅 → ((𝑥‘(𝑐 − 1)) < (𝑥‘𝑐) → (𝑥‘(𝑐 − 1))𝑅(𝑥‘𝑐))) | |
| 2 | 1 | ralimdv 3144 | . . . 4 ⊢ ( < ⊆ 𝑅 → (∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥‘𝑐) → ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥‘𝑐))) |
| 3 | 2 | anim2d 612 | . . 3 ⊢ ( < ⊆ 𝑅 → ((𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥‘𝑐)) → (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥‘𝑐)))) |
| 4 | ischn 18505 | . . 3 ⊢ (𝑥 ∈ ( < Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1)) < (𝑥‘𝑐))) | |
| 5 | ischn 18505 | . . 3 ⊢ (𝑥 ∈ (𝑅 Chain 𝐴) ↔ (𝑥 ∈ Word 𝐴 ∧ ∀𝑐 ∈ (dom 𝑥 ∖ {0})(𝑥‘(𝑐 − 1))𝑅(𝑥‘𝑐))) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ ( < ⊆ 𝑅 → (𝑥 ∈ ( < Chain 𝐴) → 𝑥 ∈ (𝑅 Chain 𝐴))) |
| 7 | 6 | ssrdv 3938 | 1 ⊢ ( < ⊆ 𝑅 → ( < Chain 𝐴) ⊆ (𝑅 Chain 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ∀wral 3045 ∖ cdif 3897 ⊆ wss 3900 {csn 4574 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 − cmin 11336 Word cword 14412 Chain cchn 18503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-dm 5624 df-iota 6433 df-fv 6485 df-chn 18504 |
| This theorem is referenced by: chnrdss 18515 |
| Copyright terms: Public domain | W3C validator |