| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: class2set 5297 otiunsndisj 5465 peano5 7831 poseq 8096 frrlem14 8237 onnseq 8272 oalimcl 8483 omlimcl 8501 oeeulem 8524 nneob 8579 wemappo 9444 setind 9646 cardlim 9874 cardaleph 9989 cflim2 10163 fin23lem38 10249 isf32lem5 10257 winainflem 10593 winalim2 10596 supaddc 12098 supmul1 12100 ixxub 13270 ixxlb 13271 supicclub2 13408 s3iunsndisj 14879 rlimuni 15461 rlimcld2 15489 rlimno1 15565 harmonic 15770 eirr 16118 ruclem12 16154 dvdsle 16225 prmreclem5 16836 prmreclem6 16837 vdwnnlem3 16913 frgpnabllem1 19789 ablfacrplem 19983 lbsextlem3 21101 lmmo 23298 fbasfip 23786 hauspwpwf1 23905 alexsublem 23962 tsmsfbas 24046 iccntr 24740 reconnlem2 24746 evth 24888 bcthlem5 25258 minveclem3b 25358 itg2seq 25673 dvferm1 25919 dvferm2 25921 aaliou3lem9 26288 taylthlem2 26312 taylthlem2OLD 26313 vma1 27106 pntlem3 27550 ostth2lem1 27559 nosupbnd1lem4 27653 noinfbnd1lem4 27668 nocvxminlem 27720 tglowdim1i 28482 ssmxidllem 33447 constrcon 33810 ordtconnlem1 33960 ballotlemimin 34542 setindregs 35151 tailfb 36444 unblimceq0 36574 fdc 37808 heibor1lem 37872 heiborlem8 37881 atlatmstc 39441 pmap0 39887 hdmap14lem4a 41993 cmpfiiin 42817 limcrecl 45756 dirkercncflem2 46229 fourierdlem20 46252 fourierdlem42 46274 fourierdlem46 46277 fourierdlem63 46294 fourierdlem64 46295 fourierdlem65 46296 otiunsndisjX 47406 upgrimpths 48036 |
| Copyright terms: Public domain | W3C validator |