| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 3058 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: class2set 5293 otiunsndisj 5460 peano5 7823 poseq 8088 frrlem14 8229 onnseq 8264 oalimcl 8475 omlimcl 8493 oeeulem 8516 nneob 8571 wemappo 9435 setind 9637 cardlim 9865 cardaleph 9980 cflim2 10154 fin23lem38 10240 isf32lem5 10248 winainflem 10584 winalim2 10587 supaddc 12089 supmul1 12091 ixxub 13266 ixxlb 13267 supicclub2 13404 s3iunsndisj 14875 rlimuni 15457 rlimcld2 15485 rlimno1 15561 harmonic 15766 eirr 16114 ruclem12 16150 dvdsle 16221 prmreclem5 16832 prmreclem6 16833 vdwnnlem3 16909 frgpnabllem1 19786 ablfacrplem 19980 lbsextlem3 21098 lmmo 23296 fbasfip 23784 hauspwpwf1 23903 alexsublem 23960 tsmsfbas 24044 iccntr 24738 reconnlem2 24744 evth 24886 bcthlem5 25256 minveclem3b 25356 itg2seq 25671 dvferm1 25917 dvferm2 25919 aaliou3lem9 26286 taylthlem2 26310 taylthlem2OLD 26311 vma1 27104 pntlem3 27548 ostth2lem1 27557 nosupbnd1lem4 27651 noinfbnd1lem4 27666 nocvxminlem 27718 tglowdim1i 28480 ssmxidllem 33436 constrcon 33785 ordtconnlem1 33935 ballotlemimin 34517 setindregs 35126 tailfb 36417 unblimceq0 36547 fdc 37791 heibor1lem 37855 heiborlem8 37864 atlatmstc 39364 pmap0 39810 hdmap14lem4a 41916 cmpfiiin 42736 limcrecl 45675 dirkercncflem2 46148 fourierdlem20 46171 fourierdlem42 46193 fourierdlem46 46196 fourierdlem63 46213 fourierdlem64 46214 fourierdlem65 46215 otiunsndisjX 47316 upgrimpths 47946 |
| Copyright terms: Public domain | W3C validator |