Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
Ref | Expression |
---|---|
nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
2 | 1 | ralrimiva 3109 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | ralnex 3165 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-ral 3070 df-rex 3071 |
This theorem is referenced by: class2set 5279 otiunsndisj 5436 peano5 7727 peano5OLD 7728 frrlem14 8099 onnseq 8159 oalimcl 8367 omlimcl 8385 oeeulem 8408 nneob 8460 wemappo 9269 setind 9475 cardlim 9714 cardaleph 9829 cflim2 10003 fin23lem38 10089 isf32lem5 10097 winainflem 10433 winalim2 10436 supaddc 11925 supmul1 11927 ixxub 13082 ixxlb 13083 supicclub2 13218 s3iunsndisj 14660 rlimuni 15240 rlimcld2 15268 rlimno1 15346 harmonic 15552 eirr 15895 ruclem12 15931 dvdsle 16000 prmreclem5 16602 prmreclem6 16603 vdwnnlem3 16679 frgpnabllem1 19455 ablfacrplem 19649 lbsextlem3 20403 lmmo 22512 fbasfip 23000 hauspwpwf1 23119 alexsublem 23176 tsmsfbas 23260 iccntr 23965 reconnlem2 23971 evth 24103 bcthlem5 24473 minveclem3b 24573 itg2seq 24888 dvferm1 25130 dvferm2 25132 aaliou3lem9 25491 taylthlem2 25514 vma1 26296 pntlem3 26738 ostth2lem1 26747 tglowdim1i 26843 ssmxidllem 31620 ordtconnlem1 31853 ballotlemimin 32451 poseq 33781 nosupbnd1lem4 33893 noinfbnd1lem4 33908 nocvxminlem 33951 tailfb 34545 unblimceq0 34666 fdc 35882 heibor1lem 35946 heiborlem8 35955 atlatmstc 37312 pmap0 37758 hdmap14lem4a 39864 cmpfiiin 40499 limcrecl 43124 dirkercncflem2 43599 fourierdlem20 43622 fourierdlem42 43644 fourierdlem46 43647 fourierdlem63 43664 fourierdlem64 43665 fourierdlem65 43666 otiunsndisjX 44722 |
Copyright terms: Public domain | W3C validator |