| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: class2set 5330 otiunsndisj 5500 peano5 7894 poseq 8162 frrlem14 8303 onnseq 8363 oalimcl 8577 omlimcl 8595 oeeulem 8618 nneob 8673 wemappo 9568 setind 9753 cardlim 9991 cardaleph 10108 cflim2 10282 fin23lem38 10368 isf32lem5 10376 winainflem 10712 winalim2 10715 supaddc 12214 supmul1 12216 ixxub 13388 ixxlb 13389 supicclub2 13526 s3iunsndisj 14992 rlimuni 15571 rlimcld2 15599 rlimno1 15675 harmonic 15880 eirr 16228 ruclem12 16264 dvdsle 16334 prmreclem5 16945 prmreclem6 16946 vdwnnlem3 17022 frgpnabllem1 19859 ablfacrplem 20053 lbsextlem3 21126 lmmo 23323 fbasfip 23811 hauspwpwf1 23930 alexsublem 23987 tsmsfbas 24071 iccntr 24766 reconnlem2 24772 evth 24914 bcthlem5 25285 minveclem3b 25385 itg2seq 25700 dvferm1 25946 dvferm2 25948 aaliou3lem9 26315 taylthlem2 26339 taylthlem2OLD 26340 vma1 27133 pntlem3 27577 ostth2lem1 27586 nosupbnd1lem4 27680 noinfbnd1lem4 27695 nocvxminlem 27746 tglowdim1i 28485 ssmxidllem 33493 constrcon 33813 ordtconnlem1 33960 ballotlemimin 34543 tailfb 36400 unblimceq0 36530 fdc 37774 heibor1lem 37838 heiborlem8 37847 atlatmstc 39342 pmap0 39789 hdmap14lem4a 41895 cmpfiiin 42695 limcrecl 45638 dirkercncflem2 46113 fourierdlem20 46136 fourierdlem42 46158 fourierdlem46 46161 fourierdlem63 46178 fourierdlem64 46179 fourierdlem65 46180 otiunsndisjX 47288 upgrimpths 47902 |
| Copyright terms: Public domain | W3C validator |