![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
Ref | Expression |
---|---|
nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
2 | 1 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | ralnex 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 df-rex 3069 |
This theorem is referenced by: class2set 5361 otiunsndisj 5530 peano5 7916 poseq 8182 frrlem14 8323 onnseq 8383 oalimcl 8597 omlimcl 8615 oeeulem 8638 nneob 8693 wemappo 9587 setind 9772 cardlim 10010 cardaleph 10127 cflim2 10301 fin23lem38 10387 isf32lem5 10395 winainflem 10731 winalim2 10734 supaddc 12233 supmul1 12235 ixxub 13405 ixxlb 13406 supicclub2 13541 s3iunsndisj 15004 rlimuni 15583 rlimcld2 15611 rlimno1 15687 harmonic 15892 eirr 16238 ruclem12 16274 dvdsle 16344 prmreclem5 16954 prmreclem6 16955 vdwnnlem3 17031 frgpnabllem1 19906 ablfacrplem 20100 lbsextlem3 21180 lmmo 23404 fbasfip 23892 hauspwpwf1 24011 alexsublem 24068 tsmsfbas 24152 iccntr 24857 reconnlem2 24863 evth 25005 bcthlem5 25376 minveclem3b 25476 itg2seq 25792 dvferm1 26038 dvferm2 26040 aaliou3lem9 26407 taylthlem2 26431 taylthlem2OLD 26432 vma1 27224 pntlem3 27668 ostth2lem1 27677 nosupbnd1lem4 27771 noinfbnd1lem4 27786 nocvxminlem 27837 tglowdim1i 28524 ssmxidllem 33481 ordtconnlem1 33885 ballotlemimin 34487 tailfb 36360 unblimceq0 36490 fdc 37732 heibor1lem 37796 heiborlem8 37805 atlatmstc 39301 pmap0 39748 hdmap14lem4a 41854 cmpfiiin 42685 limcrecl 45585 dirkercncflem2 46060 fourierdlem20 46083 fourierdlem42 46105 fourierdlem46 46108 fourierdlem63 46125 fourierdlem64 46126 fourierdlem65 46127 otiunsndisjX 47229 |
Copyright terms: Public domain | W3C validator |