![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
Ref | Expression |
---|---|
nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
2 | 1 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | ralnex 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: class2set 5373 otiunsndisj 5539 peano5 7932 peano5OLD 7933 poseq 8199 frrlem14 8340 onnseq 8400 oalimcl 8616 omlimcl 8634 oeeulem 8657 nneob 8712 wemappo 9618 setind 9803 cardlim 10041 cardaleph 10158 cflim2 10332 fin23lem38 10418 isf32lem5 10426 winainflem 10762 winalim2 10765 supaddc 12262 supmul1 12264 ixxub 13428 ixxlb 13429 supicclub2 13564 s3iunsndisj 15017 rlimuni 15596 rlimcld2 15624 rlimno1 15702 harmonic 15907 eirr 16253 ruclem12 16289 dvdsle 16358 prmreclem5 16967 prmreclem6 16968 vdwnnlem3 17044 frgpnabllem1 19915 ablfacrplem 20109 lbsextlem3 21185 lmmo 23409 fbasfip 23897 hauspwpwf1 24016 alexsublem 24073 tsmsfbas 24157 iccntr 24862 reconnlem2 24868 evth 25010 bcthlem5 25381 minveclem3b 25481 itg2seq 25797 dvferm1 26043 dvferm2 26045 aaliou3lem9 26410 taylthlem2 26434 taylthlem2OLD 26435 vma1 27227 pntlem3 27671 ostth2lem1 27680 nosupbnd1lem4 27774 noinfbnd1lem4 27789 nocvxminlem 27840 tglowdim1i 28527 ssmxidllem 33466 ordtconnlem1 33870 ballotlemimin 34470 tailfb 36343 unblimceq0 36473 fdc 37705 heibor1lem 37769 heiborlem8 37778 atlatmstc 39275 pmap0 39722 hdmap14lem4a 41828 cmpfiiin 42653 limcrecl 45550 dirkercncflem2 46025 fourierdlem20 46048 fourierdlem42 46070 fourierdlem46 46073 fourierdlem63 46090 fourierdlem64 46091 fourierdlem65 46092 otiunsndisjX 47194 |
Copyright terms: Public domain | W3C validator |