![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
Ref | Expression |
---|---|
nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
2 | 1 | ralrimiva 3147 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | ralnex 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-ral 3063 df-rex 3072 |
This theorem is referenced by: class2set 5354 otiunsndisj 5521 peano5 7884 peano5OLD 7885 poseq 8144 frrlem14 8284 onnseq 8344 oalimcl 8560 omlimcl 8578 oeeulem 8601 nneob 8655 wemappo 9544 setind 9729 cardlim 9967 cardaleph 10084 cflim2 10258 fin23lem38 10344 isf32lem5 10352 winainflem 10688 winalim2 10691 supaddc 12181 supmul1 12183 ixxub 13345 ixxlb 13346 supicclub2 13481 s3iunsndisj 14915 rlimuni 15494 rlimcld2 15522 rlimno1 15600 harmonic 15805 eirr 16148 ruclem12 16184 dvdsle 16253 prmreclem5 16853 prmreclem6 16854 vdwnnlem3 16930 frgpnabllem1 19741 ablfacrplem 19935 lbsextlem3 20773 lmmo 22884 fbasfip 23372 hauspwpwf1 23491 alexsublem 23548 tsmsfbas 23632 iccntr 24337 reconnlem2 24343 evth 24475 bcthlem5 24845 minveclem3b 24945 itg2seq 25260 dvferm1 25502 dvferm2 25504 aaliou3lem9 25863 taylthlem2 25886 vma1 26670 pntlem3 27112 ostth2lem1 27121 nosupbnd1lem4 27214 noinfbnd1lem4 27229 nocvxminlem 27279 tglowdim1i 27783 ssmxidllem 32620 ordtconnlem1 32935 ballotlemimin 33535 tailfb 35310 unblimceq0 35431 fdc 36661 heibor1lem 36725 heiborlem8 36734 atlatmstc 38237 pmap0 38684 hdmap14lem4a 40790 cmpfiiin 41483 limcrecl 44393 dirkercncflem2 44868 fourierdlem20 44891 fourierdlem42 44913 fourierdlem46 44916 fourierdlem63 44933 fourierdlem64 44934 fourierdlem65 44935 otiunsndisjX 46035 |
Copyright terms: Public domain | W3C validator |