| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: class2set 5297 otiunsndisj 5467 peano5 7833 poseq 8098 frrlem14 8239 onnseq 8274 oalimcl 8485 omlimcl 8503 oeeulem 8526 nneob 8581 wemappo 9460 setind 9649 cardlim 9887 cardaleph 10002 cflim2 10176 fin23lem38 10262 isf32lem5 10270 winainflem 10606 winalim2 10609 supaddc 12110 supmul1 12112 ixxub 13287 ixxlb 13288 supicclub2 13425 s3iunsndisj 14893 rlimuni 15475 rlimcld2 15503 rlimno1 15579 harmonic 15784 eirr 16132 ruclem12 16168 dvdsle 16239 prmreclem5 16850 prmreclem6 16851 vdwnnlem3 16927 frgpnabllem1 19770 ablfacrplem 19964 lbsextlem3 21085 lmmo 23283 fbasfip 23771 hauspwpwf1 23890 alexsublem 23947 tsmsfbas 24031 iccntr 24726 reconnlem2 24732 evth 24874 bcthlem5 25244 minveclem3b 25344 itg2seq 25659 dvferm1 25905 dvferm2 25907 aaliou3lem9 26274 taylthlem2 26298 taylthlem2OLD 26299 vma1 27092 pntlem3 27536 ostth2lem1 27545 nosupbnd1lem4 27639 noinfbnd1lem4 27654 nocvxminlem 27706 tglowdim1i 28464 ssmxidllem 33423 constrcon 33743 ordtconnlem1 33893 ballotlemimin 34476 setindregs 35067 tailfb 36353 unblimceq0 36483 fdc 37727 heibor1lem 37791 heiborlem8 37800 atlatmstc 39300 pmap0 39747 hdmap14lem4a 41853 cmpfiiin 42673 limcrecl 45614 dirkercncflem2 46089 fourierdlem20 46112 fourierdlem42 46134 fourierdlem46 46137 fourierdlem63 46154 fourierdlem64 46155 fourierdlem65 46156 otiunsndisjX 47267 upgrimpths 47897 |
| Copyright terms: Public domain | W3C validator |