| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version | ||
| Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: class2set 5310 otiunsndisj 5480 peano5 7869 poseq 8137 frrlem14 8278 onnseq 8313 oalimcl 8524 omlimcl 8542 oeeulem 8565 nneob 8620 wemappo 9502 setind 9687 cardlim 9925 cardaleph 10042 cflim2 10216 fin23lem38 10302 isf32lem5 10310 winainflem 10646 winalim2 10649 supaddc 12150 supmul1 12152 ixxub 13327 ixxlb 13328 supicclub2 13465 s3iunsndisj 14934 rlimuni 15516 rlimcld2 15544 rlimno1 15620 harmonic 15825 eirr 16173 ruclem12 16209 dvdsle 16280 prmreclem5 16891 prmreclem6 16892 vdwnnlem3 16968 frgpnabllem1 19803 ablfacrplem 19997 lbsextlem3 21070 lmmo 23267 fbasfip 23755 hauspwpwf1 23874 alexsublem 23931 tsmsfbas 24015 iccntr 24710 reconnlem2 24716 evth 24858 bcthlem5 25228 minveclem3b 25328 itg2seq 25643 dvferm1 25889 dvferm2 25891 aaliou3lem9 26258 taylthlem2 26282 taylthlem2OLD 26283 vma1 27076 pntlem3 27520 ostth2lem1 27529 nosupbnd1lem4 27623 noinfbnd1lem4 27638 nocvxminlem 27689 tglowdim1i 28428 ssmxidllem 33444 constrcon 33764 ordtconnlem1 33914 ballotlemimin 34497 tailfb 36365 unblimceq0 36495 fdc 37739 heibor1lem 37803 heiborlem8 37812 atlatmstc 39312 pmap0 39759 hdmap14lem4a 41865 cmpfiiin 42685 limcrecl 45627 dirkercncflem2 46102 fourierdlem20 46125 fourierdlem42 46147 fourierdlem46 46150 fourierdlem63 46167 fourierdlem64 46168 fourierdlem65 46169 otiunsndisjX 47280 upgrimpths 47909 |
| Copyright terms: Public domain | W3C validator |