Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrexdv | Structured version Visualization version GIF version |
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Wolf Lammen, 5-Jan-2020.) |
Ref | Expression |
---|---|
nrexdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) |
Ref | Expression |
---|---|
nrexdv | ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrexdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝜓) | |
2 | 1 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝜓) |
3 | ralnex 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-ral 3063 df-rex 3072 |
This theorem is referenced by: class2set 5285 otiunsndisj 5447 peano5 7772 peano5OLD 7773 frrlem14 8146 onnseq 8206 oalimcl 8422 omlimcl 8440 oeeulem 8463 nneob 8517 wemappo 9352 setind 9536 cardlim 9774 cardaleph 9891 cflim2 10065 fin23lem38 10151 isf32lem5 10159 winainflem 10495 winalim2 10498 supaddc 11988 supmul1 11990 ixxub 13146 ixxlb 13147 supicclub2 13282 s3iunsndisj 14724 rlimuni 15304 rlimcld2 15332 rlimno1 15410 harmonic 15616 eirr 15959 ruclem12 15995 dvdsle 16064 prmreclem5 16666 prmreclem6 16667 vdwnnlem3 16743 frgpnabllem1 19519 ablfacrplem 19713 lbsextlem3 20467 lmmo 22576 fbasfip 23064 hauspwpwf1 23183 alexsublem 23240 tsmsfbas 23324 iccntr 24029 reconnlem2 24035 evth 24167 bcthlem5 24537 minveclem3b 24637 itg2seq 24952 dvferm1 25194 dvferm2 25196 aaliou3lem9 25555 taylthlem2 25578 vma1 26360 pntlem3 26802 ostth2lem1 26811 tglowdim1i 26907 ssmxidllem 31686 ordtconnlem1 31919 ballotlemimin 32517 poseq 33847 nosupbnd1lem4 33959 noinfbnd1lem4 33974 nocvxminlem 34017 tailfb 34611 unblimceq0 34732 fdc 35947 heibor1lem 36011 heiborlem8 36020 atlatmstc 37375 pmap0 37821 hdmap14lem4a 39927 cmpfiiin 40556 limcrecl 43219 dirkercncflem2 43694 fourierdlem20 43717 fourierdlem42 43739 fourierdlem46 43742 fourierdlem63 43759 fourierdlem64 43760 fourierdlem65 43761 otiunsndisjX 44829 |
Copyright terms: Public domain | W3C validator |