![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20883 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | ringgrp 20256 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Scalarcsca 17301 Grpcgrp 18964 Ringcrg 20251 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-ring 20253 df-lmod 20877 |
This theorem is referenced by: lmodacl 20887 lmodsn0 20889 lmodvneg1 20920 lssvsubcl 20960 lspsnneg 21022 lvecvscan2 21132 lspexch 21149 lspsolvlem 21162 ipsubdir 21678 ipsubdi 21679 ip2eq 21689 ocvlss 21708 lsmcss 21728 islindf4 21876 ascl0 21922 clmfgrp 25118 lmodvslmhm 33036 lflmul 39050 lkrlss 39077 eqlkr 39081 lkrlsp 39084 lshpkrlem1 39092 ldualvsubval 39139 lcfrlem1 41525 lcdvsubval 41601 lmodvsmdi 48224 lincsum 48275 lincsumcl 48277 lincext1 48300 lindslinindsimp1 48303 lindslinindimp2lem1 48304 lindslinindsimp2lem5 48308 ldepsprlem 48318 ldepspr 48319 lincresunit3lem3 48320 lincresunit3lem1 48325 lincresunit3lem2 48326 lincresunit3 48327 |
Copyright terms: Public domain | W3C validator |