| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20830 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20203 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 Scalarcsca 17279 Grpcgrp 18921 Ringcrg 20198 LModclmod 20822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-ring 20200 df-lmod 20824 |
| This theorem is referenced by: lmodacl 20834 lmodsn0 20836 lmodvneg1 20867 lssvsubcl 20906 lspsnneg 20968 lvecvscan2 21078 lspexch 21095 lspsolvlem 21108 ipsubdir 21607 ipsubdi 21608 ip2eq 21618 ocvlss 21637 lsmcss 21657 islindf4 21803 ascl0 21849 clmfgrp 25027 lmodvslmhm 33049 lflmul 39091 lkrlss 39118 eqlkr 39122 lkrlsp 39125 lshpkrlem1 39133 ldualvsubval 39180 lcfrlem1 41566 lcdvsubval 41642 lmodvsmdi 48321 lincsum 48372 lincsumcl 48374 lincext1 48397 lindslinindsimp1 48400 lindslinindimp2lem1 48401 lindslinindsimp2lem5 48405 ldepsprlem 48415 ldepspr 48416 lincresunit3lem3 48417 lincresunit3lem1 48422 lincresunit3lem2 48423 lincresunit3 48424 |
| Copyright terms: Public domain | W3C validator |