MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 20889
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20888 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 20265 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Scalarcsca 17314  Grpcgrp 18973  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lmodacl  20892  lmodsn0  20894  lmodvneg1  20925  lssvsubcl  20965  lspsnneg  21027  lvecvscan2  21137  lspexch  21154  lspsolvlem  21167  ipsubdir  21683  ipsubdi  21684  ip2eq  21694  ocvlss  21713  lsmcss  21733  islindf4  21881  ascl0  21927  clmfgrp  25123  lmodvslmhm  33033  lflmul  39024  lkrlss  39051  eqlkr  39055  lkrlsp  39058  lshpkrlem1  39066  ldualvsubval  39113  lcfrlem1  41499  lcdvsubval  41575  lmodvsmdi  48107  lincsum  48158  lincsumcl  48160  lincext1  48183  lindslinindsimp1  48186  lindslinindimp2lem1  48187  lindslinindsimp2lem5  48191  ldepsprlem  48201  ldepspr  48202  lincresunit3lem3  48203  lincresunit3lem1  48208  lincresunit3lem2  48209  lincresunit3  48210
  Copyright terms: Public domain W3C validator