MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 20845
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20844 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 20221 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6554  Scalarcsca 17269  Grpcgrp 18928  Ringcrg 20216  LModclmod 20836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5311
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-iota 6506  df-fv 6562  df-ov 7427  df-ring 20218  df-lmod 20838
This theorem is referenced by:  lmodacl  20848  lmodsn0  20850  lmodvneg1  20881  lssvsubcl  20921  lspsnneg  20983  lvecvscan2  21093  lspexch  21110  lspsolvlem  21123  ipsubdir  21638  ipsubdi  21639  ip2eq  21649  ocvlss  21668  lsmcss  21688  islindf4  21836  ascl0  21881  clmfgrp  25089  lmodvslmhm  32918  lflmul  38766  lkrlss  38793  eqlkr  38797  lkrlsp  38800  lshpkrlem1  38808  ldualvsubval  38855  lcfrlem1  41241  lcdvsubval  41317  lmodvsmdi  47761  lincsum  47812  lincsumcl  47814  lincext1  47837  lindslinindsimp1  47840  lindslinindimp2lem1  47841  lindslinindsimp2lem5  47845  ldepsprlem  47855  ldepspr  47856  lincresunit3lem3  47857  lincresunit3lem1  47862  lincresunit3lem2  47863  lincresunit3  47864
  Copyright terms: Public domain W3C validator