| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20803 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20158 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 Scalarcsca 17166 Grpcgrp 18848 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lmodacl 20807 lmodsn0 20809 lmodvneg1 20840 lssvsubcl 20879 lspsnneg 20941 lvecvscan2 21051 lspexch 21068 lspsolvlem 21081 ipsubdir 21581 ipsubdi 21582 ip2eq 21592 ocvlss 21611 lsmcss 21631 islindf4 21777 ascl0 21823 clmfgrp 24999 lmodvslmhm 33037 lflmul 39187 lkrlss 39214 eqlkr 39218 lkrlsp 39221 lshpkrlem1 39229 ldualvsubval 39276 lcfrlem1 41661 lcdvsubval 41737 lmodvsmdi 48503 lincsum 48554 lincsumcl 48556 lincext1 48579 lindslinindsimp1 48582 lindslinindimp2lem1 48583 lindslinindsimp2lem5 48587 ldepsprlem 48597 ldepspr 48598 lincresunit3lem3 48599 lincresunit3lem1 48604 lincresunit3lem2 48605 lincresunit3 48606 |
| Copyright terms: Public domain | W3C validator |