![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20844 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | ringgrp 20221 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 Scalarcsca 17269 Grpcgrp 18928 Ringcrg 20216 LModclmod 20836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 df-ov 7427 df-ring 20218 df-lmod 20838 |
This theorem is referenced by: lmodacl 20848 lmodsn0 20850 lmodvneg1 20881 lssvsubcl 20921 lspsnneg 20983 lvecvscan2 21093 lspexch 21110 lspsolvlem 21123 ipsubdir 21638 ipsubdi 21639 ip2eq 21649 ocvlss 21668 lsmcss 21688 islindf4 21836 ascl0 21881 clmfgrp 25089 lmodvslmhm 32918 lflmul 38766 lkrlss 38793 eqlkr 38797 lkrlsp 38800 lshpkrlem1 38808 ldualvsubval 38855 lcfrlem1 41241 lcdvsubval 41317 lmodvsmdi 47761 lincsum 47812 lincsumcl 47814 lincext1 47837 lindslinindsimp1 47840 lindslinindimp2lem1 47841 lindslinindsimp2lem5 47845 ldepsprlem 47855 ldepspr 47856 lincresunit3lem3 47857 lincresunit3lem1 47862 lincresunit3lem2 47863 lincresunit3 47864 |
Copyright terms: Public domain | W3C validator |