MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 20132
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20131 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 19788 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  Scalarcsca 16965  Grpcgrp 18577  Ringcrg 19783  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-ring 19785  df-lmod 20125
This theorem is referenced by:  lmodacl  20134  lmodsn0  20136  lmodvneg1  20166  lssvsubcl  20205  lspsnneg  20268  lvecvscan2  20374  lspexch  20391  lspsolvlem  20404  ipsubdir  20847  ipsubdi  20848  ip2eq  20858  ocvlss  20877  lsmcss  20897  islindf4  21045  ascl0  21088  clmfgrp  24234  lmodvslmhm  31310  lflmul  37082  lkrlss  37109  eqlkr  37113  lkrlsp  37116  lshpkrlem1  37124  ldualvsubval  37171  lcfrlem1  39556  lcdvsubval  39632  lmodvsmdi  45718  lincsum  45770  lincsumcl  45772  lincext1  45795  lindslinindsimp1  45798  lindslinindimp2lem1  45799  lindslinindsimp2lem5  45803  ldepsprlem  45813  ldepspr  45814  lincresunit3lem3  45815  lincresunit3lem1  45820  lincresunit3lem2  45821  lincresunit3  45822
  Copyright terms: Public domain W3C validator