| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20867 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20236 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 Scalarcsca 17301 Grpcgrp 18952 Ringcrg 20231 LModclmod 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-ring 20233 df-lmod 20861 |
| This theorem is referenced by: lmodacl 20871 lmodsn0 20873 lmodvneg1 20904 lssvsubcl 20943 lspsnneg 21005 lvecvscan2 21115 lspexch 21132 lspsolvlem 21145 ipsubdir 21661 ipsubdi 21662 ip2eq 21672 ocvlss 21691 lsmcss 21711 islindf4 21859 ascl0 21905 clmfgrp 25105 lmodvslmhm 33054 lflmul 39070 lkrlss 39097 eqlkr 39101 lkrlsp 39104 lshpkrlem1 39112 ldualvsubval 39159 lcfrlem1 41545 lcdvsubval 41621 lmodvsmdi 48300 lincsum 48351 lincsumcl 48353 lincext1 48376 lindslinindsimp1 48379 lindslinindimp2lem1 48380 lindslinindsimp2lem5 48384 ldepsprlem 48394 ldepspr 48395 lincresunit3lem3 48396 lincresunit3lem1 48401 lincresunit3lem2 48402 lincresunit3 48403 |
| Copyright terms: Public domain | W3C validator |