| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20774 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20147 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Scalarcsca 17223 Grpcgrp 18865 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lmodacl 20778 lmodsn0 20780 lmodvneg1 20811 lssvsubcl 20850 lspsnneg 20912 lvecvscan2 21022 lspexch 21039 lspsolvlem 21052 ipsubdir 21551 ipsubdi 21552 ip2eq 21562 ocvlss 21581 lsmcss 21601 islindf4 21747 ascl0 21793 clmfgrp 24971 lmodvslmhm 32990 lflmul 39061 lkrlss 39088 eqlkr 39092 lkrlsp 39095 lshpkrlem1 39103 ldualvsubval 39150 lcfrlem1 41536 lcdvsubval 41612 lmodvsmdi 48367 lincsum 48418 lincsumcl 48420 lincext1 48443 lindslinindsimp1 48446 lindslinindimp2lem1 48447 lindslinindsimp2lem5 48451 ldepsprlem 48461 ldepspr 48462 lincresunit3lem3 48463 lincresunit3lem1 48468 lincresunit3lem2 48469 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |