Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20229 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | ringgrp 19875 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 Scalarcsca 17054 Grpcgrp 18665 Ringcrg 19870 LModclmod 20221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-ring 19872 df-lmod 20223 |
This theorem is referenced by: lmodacl 20232 lmodsn0 20234 lmodvneg1 20264 lssvsubcl 20303 lspsnneg 20366 lvecvscan2 20472 lspexch 20489 lspsolvlem 20502 ipsubdir 20945 ipsubdi 20946 ip2eq 20956 ocvlss 20975 lsmcss 20995 islindf4 21143 ascl0 21186 clmfgrp 24332 lmodvslmhm 31538 lflmul 37328 lkrlss 37355 eqlkr 37359 lkrlsp 37362 lshpkrlem1 37370 ldualvsubval 37417 lcfrlem1 39803 lcdvsubval 39879 lmodvsmdi 46058 lincsum 46110 lincsumcl 46112 lincext1 46135 lindslinindsimp1 46138 lindslinindimp2lem1 46139 lindslinindsimp2lem5 46143 ldepsprlem 46153 ldepspr 46154 lincresunit3lem3 46155 lincresunit3lem1 46160 lincresunit3lem2 46161 lincresunit3 46162 |
Copyright terms: Public domain | W3C validator |