![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 20888 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | ringgrp 20265 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 Grpcgrp 18973 Ringcrg 20260 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ring 20262 df-lmod 20882 |
This theorem is referenced by: lmodacl 20892 lmodsn0 20894 lmodvneg1 20925 lssvsubcl 20965 lspsnneg 21027 lvecvscan2 21137 lspexch 21154 lspsolvlem 21167 ipsubdir 21683 ipsubdi 21684 ip2eq 21694 ocvlss 21713 lsmcss 21733 islindf4 21881 ascl0 21927 clmfgrp 25123 lmodvslmhm 33033 lflmul 39024 lkrlss 39051 eqlkr 39055 lkrlsp 39058 lshpkrlem1 39066 ldualvsubval 39113 lcfrlem1 41499 lcdvsubval 41575 lmodvsmdi 48107 lincsum 48158 lincsumcl 48160 lincext1 48183 lindslinindsimp1 48186 lindslinindimp2lem1 48187 lindslinindsimp2lem5 48191 ldepsprlem 48201 ldepspr 48202 lincresunit3lem3 48203 lincresunit3lem1 48208 lincresunit3lem2 48209 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |