MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 20047
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20046 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 19703 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  Scalarcsca 16891  Grpcgrp 18492  Ringcrg 19698  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-ring 19700  df-lmod 20040
This theorem is referenced by:  lmodacl  20049  lmodsn0  20051  lmodvneg1  20081  lssvsubcl  20120  lspsnneg  20183  lvecvscan2  20289  lspexch  20306  lspsolvlem  20319  ipsubdir  20759  ipsubdi  20760  ip2eq  20770  ocvlss  20789  lsmcss  20809  islindf4  20955  ascl0  20998  clmfgrp  24140  lmodvslmhm  31212  lflmul  37009  lkrlss  37036  eqlkr  37040  lkrlsp  37043  lshpkrlem1  37051  ldualvsubval  37098  lcfrlem1  39483  lcdvsubval  39559  lmodvsmdi  45606  lincsum  45658  lincsumcl  45660  lincext1  45683  lindslinindsimp1  45686  lindslinindimp2lem1  45687  lindslinindsimp2lem5  45691  ldepsprlem  45701  ldepspr  45702  lincresunit3lem3  45703  lincresunit3lem1  45708  lincresunit3lem2  45709  lincresunit3  45710
  Copyright terms: Public domain W3C validator