![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodfgrp | β’ (π β LMod β πΉ β Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
2 | 1 | lmodring 20623 | . 2 β’ (π β LMod β πΉ β Ring) |
3 | ringgrp 20133 | . 2 β’ (πΉ β Ring β πΉ β Grp) | |
4 | 2, 3 | syl 17 | 1 β’ (π β LMod β πΉ β Grp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6543 Scalarcsca 17205 Grpcgrp 18856 Ringcrg 20128 LModclmod 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-ring 20130 df-lmod 20617 |
This theorem is referenced by: lmodacl 20627 lmodsn0 20629 lmodvneg1 20660 lssvsubcl 20699 lspsnneg 20762 lvecvscan2 20871 lspexch 20888 lspsolvlem 20901 ipsubdir 21415 ipsubdi 21416 ip2eq 21426 ocvlss 21445 lsmcss 21465 islindf4 21613 ascl0 21658 clmfgrp 24819 lmodvslmhm 32473 lflmul 38242 lkrlss 38269 eqlkr 38273 lkrlsp 38276 lshpkrlem1 38284 ldualvsubval 38331 lcfrlem1 40717 lcdvsubval 40793 lmodvsmdi 47147 lincsum 47198 lincsumcl 47200 lincext1 47223 lindslinindsimp1 47226 lindslinindimp2lem1 47227 lindslinindsimp2lem5 47231 ldepsprlem 47241 ldepspr 47242 lincresunit3lem3 47243 lincresunit3lem1 47248 lincresunit3lem2 47249 lincresunit3 47250 |
Copyright terms: Public domain | W3C validator |