| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20789 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20141 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Scalarcsca 17182 Grpcgrp 18830 Ringcrg 20136 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-ring 20138 df-lmod 20783 |
| This theorem is referenced by: lmodacl 20793 lmodsn0 20795 lmodvneg1 20826 lssvsubcl 20865 lspsnneg 20927 lvecvscan2 21037 lspexch 21054 lspsolvlem 21067 ipsubdir 21567 ipsubdi 21568 ip2eq 21578 ocvlss 21597 lsmcss 21617 islindf4 21763 ascl0 21809 clmfgrp 24987 lmodvslmhm 33016 lflmul 39046 lkrlss 39073 eqlkr 39077 lkrlsp 39080 lshpkrlem1 39088 ldualvsubval 39135 lcfrlem1 41521 lcdvsubval 41597 lmodvsmdi 48364 lincsum 48415 lincsumcl 48417 lincext1 48440 lindslinindsimp1 48443 lindslinindimp2lem1 48444 lindslinindsimp2lem5 48448 ldepsprlem 48458 ldepspr 48459 lincresunit3lem3 48460 lincresunit3lem1 48465 lincresunit3lem2 48466 lincresunit3 48467 |
| Copyright terms: Public domain | W3C validator |