| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20799 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20154 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Scalarcsca 17161 Grpcgrp 18843 Ringcrg 20149 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-ring 20151 df-lmod 20793 |
| This theorem is referenced by: lmodacl 20803 lmodsn0 20805 lmodvneg1 20836 lssvsubcl 20875 lspsnneg 20937 lvecvscan2 21047 lspexch 21064 lspsolvlem 21077 ipsubdir 21577 ipsubdi 21578 ip2eq 21588 ocvlss 21607 lsmcss 21627 islindf4 21773 ascl0 21819 clmfgrp 24996 lmodvslmhm 33025 lflmul 39106 lkrlss 39133 eqlkr 39137 lkrlsp 39140 lshpkrlem1 39148 ldualvsubval 39195 lcfrlem1 41580 lcdvsubval 41656 lmodvsmdi 48409 lincsum 48460 lincsumcl 48462 lincext1 48485 lindslinindsimp1 48488 lindslinindimp2lem1 48489 lindslinindsimp2lem5 48493 ldepsprlem 48503 ldepspr 48504 lincresunit3lem3 48505 lincresunit3lem1 48510 lincresunit3lem2 48511 lincresunit3 48512 |
| Copyright terms: Public domain | W3C validator |