| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodfgrp | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | lmodring 20781 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 3 | ringgrp 20154 | . 2 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Scalarcsca 17230 Grpcgrp 18872 Ringcrg 20149 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-ring 20151 df-lmod 20775 |
| This theorem is referenced by: lmodacl 20785 lmodsn0 20787 lmodvneg1 20818 lssvsubcl 20857 lspsnneg 20919 lvecvscan2 21029 lspexch 21046 lspsolvlem 21059 ipsubdir 21558 ipsubdi 21559 ip2eq 21569 ocvlss 21588 lsmcss 21608 islindf4 21754 ascl0 21800 clmfgrp 24978 lmodvslmhm 32997 lflmul 39068 lkrlss 39095 eqlkr 39099 lkrlsp 39102 lshpkrlem1 39110 ldualvsubval 39157 lcfrlem1 41543 lcdvsubval 41619 lmodvsmdi 48371 lincsum 48422 lincsumcl 48424 lincext1 48447 lindslinindsimp1 48450 lindslinindimp2lem1 48451 lindslinindsimp2lem5 48455 ldepsprlem 48465 ldepspr 48466 lincresunit3lem3 48467 lincresunit3lem1 48472 lincresunit3lem2 48473 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |