![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodfgrp | Structured version Visualization version GIF version |
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodfgrp | β’ (π β LMod β πΉ β Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
2 | 1 | lmodring 20471 | . 2 β’ (π β LMod β πΉ β Ring) |
3 | ringgrp 20054 | . 2 β’ (πΉ β Ring β πΉ β Grp) | |
4 | 2, 3 | syl 17 | 1 β’ (π β LMod β πΉ β Grp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6540 Scalarcsca 17196 Grpcgrp 18815 Ringcrg 20049 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-ring 20051 df-lmod 20465 |
This theorem is referenced by: lmodacl 20475 lmodsn0 20477 lmodvneg1 20507 lssvsubcl 20546 lspsnneg 20609 lvecvscan2 20717 lspexch 20734 lspsolvlem 20747 ipsubdir 21186 ipsubdi 21187 ip2eq 21197 ocvlss 21216 lsmcss 21236 islindf4 21384 ascl0 21429 clmfgrp 24578 lmodvslmhm 32189 lflmul 37926 lkrlss 37953 eqlkr 37957 lkrlsp 37960 lshpkrlem1 37968 ldualvsubval 38015 lcfrlem1 40401 lcdvsubval 40477 lmodvsmdi 47011 lincsum 47063 lincsumcl 47065 lincext1 47088 lindslinindsimp1 47091 lindslinindimp2lem1 47092 lindslinindsimp2lem5 47096 ldepsprlem 47106 ldepspr 47107 lincresunit3lem3 47108 lincresunit3lem1 47113 lincresunit3lem2 47114 lincresunit3 47115 |
Copyright terms: Public domain | W3C validator |