MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 20775
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 20774 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 20147 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  Scalarcsca 17223  Grpcgrp 18865  Ringcrg 20142  LModclmod 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-ring 20144  df-lmod 20768
This theorem is referenced by:  lmodacl  20778  lmodsn0  20780  lmodvneg1  20811  lssvsubcl  20850  lspsnneg  20912  lvecvscan2  21022  lspexch  21039  lspsolvlem  21052  ipsubdir  21551  ipsubdi  21552  ip2eq  21562  ocvlss  21581  lsmcss  21601  islindf4  21747  ascl0  21793  clmfgrp  24971  lmodvslmhm  32990  lflmul  39061  lkrlss  39088  eqlkr  39092  lkrlsp  39095  lshpkrlem1  39103  ldualvsubval  39150  lcfrlem1  41536  lcdvsubval  41612  lmodvsmdi  48367  lincsum  48418  lincsumcl  48420  lincext1  48443  lindslinindsimp1  48446  lindslinindimp2lem1  48447  lindslinindsimp2lem5  48451  ldepsprlem  48461  ldepspr  48462  lincresunit3lem3  48463  lincresunit3lem1  48468  lincresunit3lem2  48469  lincresunit3  48470
  Copyright terms: Public domain W3C validator