![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clm0 | Structured version Visualization version GIF version |
Description: The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
clm0 | ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | eqid 2732 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
3 | 1, 2 | clmsubrg 24589 | . . 3 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
4 | eqid 2732 | . . . 4 ⊢ (ℂfld ↾s (Base‘𝐹)) = (ℂfld ↾s (Base‘𝐹)) | |
5 | cnfld0 20975 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
6 | 4, 5 | subrg0 20330 | . . 3 ⊢ ((Base‘𝐹) ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
8 | 1, 2 | clmsca 24588 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
9 | 8 | fveq2d 6895 | . 2 ⊢ (𝑊 ∈ ℂMod → (0g‘𝐹) = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
10 | 7, 9 | eqtr4d 2775 | 1 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 0cc0 11112 Basecbs 17146 ↾s cress 17175 Scalarcsca 17202 0gc0g 17387 SubRingcsubrg 20319 ℂfldccnfld 20950 ℂModcclm 24585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-0g 17389 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-subg 19005 df-cmn 19652 df-mgp 19990 df-ring 20060 df-cring 20061 df-subrg 20321 df-cnfld 20951 df-clm 24586 |
This theorem is referenced by: clm0vs 24618 clmopfne 24619 cvsunit 24654 cphorthcom 24725 cphip0l 24726 cphip0r 24727 cphipeq0 24728 ipcau2 24758 tcphcph 24761 csscld 24773 clsocv 24774 pjthlem2 24962 |
Copyright terms: Public domain | W3C validator |