![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clm0 | Structured version Visualization version GIF version |
Description: The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
clm0 | ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | eqid 2800 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
3 | 1, 2 | clmsubrg 23192 | . . 3 ⊢ (𝑊 ∈ ℂMod → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
4 | eqid 2800 | . . . 4 ⊢ (ℂfld ↾s (Base‘𝐹)) = (ℂfld ↾s (Base‘𝐹)) | |
5 | cnfld0 20091 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
6 | 4, 5 | subrg0 19104 | . . 3 ⊢ ((Base‘𝐹) ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
8 | 1, 2 | clmsca 23191 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
9 | 8 | fveq2d 6416 | . 2 ⊢ (𝑊 ∈ ℂMod → (0g‘𝐹) = (0g‘(ℂfld ↾s (Base‘𝐹)))) |
10 | 7, 9 | eqtr4d 2837 | 1 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6102 (class class class)co 6879 0cc0 10225 Basecbs 16183 ↾s cress 16184 Scalarcsca 16269 0gc0g 16414 SubRingcsubrg 19093 ℂfldccnfld 20067 ℂModcclm 23188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-addf 10304 ax-mulf 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-starv 16281 df-tset 16285 df-ple 16286 df-ds 16288 df-unif 16289 df-0g 16416 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-grp 17740 df-subg 17903 df-cmn 18509 df-mgp 18805 df-ring 18864 df-cring 18865 df-subrg 19095 df-cnfld 20068 df-clm 23189 |
This theorem is referenced by: clm0vs 23221 clmopfne 23222 cvsunit 23257 cphorthcom 23327 cphip0l 23328 cphip0r 23329 cphipeq0 23330 ipcau2 23359 tcphcph 23362 csscld 23374 clsocv 23375 pjthlem2 23547 |
Copyright terms: Public domain | W3C validator |