MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmtop Structured version   Visualization version   GIF version

Theorem cnrmtop 21945
Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmtop (𝐽 ∈ CNrm → 𝐽 ∈ Top)

Proof of Theorem cnrmtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . 3 𝐽 = 𝐽
21iscnrm 21931 . 2 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
32simplbi 501 1 (𝐽 ∈ CNrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  wral 3109  𝒫 cpw 4500   cuni 4803  (class class class)co 7139  t crest 16689  Topctop 21501  Nrmcnrm 21918  CNrmccnrm 21919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rab 3118  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-cnrm 21926
This theorem is referenced by:  restcnrm  21970
  Copyright terms: Public domain W3C validator