| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnrmtop | Structured version Visualization version GIF version | ||
| Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnrmtop | ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | iscnrm 23231 | . 2 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ∀wral 3045 𝒫 cpw 4548 ∪ cuni 4857 (class class class)co 7341 ↾t crest 17316 Topctop 22801 Nrmcnrm 23218 CNrmccnrm 23219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-cnrm 23226 |
| This theorem is referenced by: restcnrm 23270 |
| Copyright terms: Public domain | W3C validator |