MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmtop Structured version   Visualization version   GIF version

Theorem cnrmtop 23258
Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmtop (𝐽 ∈ CNrm → 𝐽 ∈ Top)

Proof of Theorem cnrmtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 𝐽 = 𝐽
21iscnrm 23244 . 2 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
32simplbi 497 1 (𝐽 ∈ CNrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  𝒫 cpw 4549   cuni 4858  (class class class)co 7352  t crest 17330  Topctop 22814  Nrmcnrm 23231  CNrmccnrm 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6443  df-fv 6495  df-ov 7355  df-cnrm 23239
This theorem is referenced by:  restcnrm  23283
  Copyright terms: Public domain W3C validator