![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrmtop | Structured version Visualization version GIF version |
Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmtop | ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscnrm 23356 | . 2 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3061 𝒫 cpw 4608 ∪ cuni 4915 (class class class)co 7438 ↾t crest 17476 Topctop 22924 Nrmcnrm 23343 CNrmccnrm 23344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-cnrm 23351 |
This theorem is referenced by: restcnrm 23395 |
Copyright terms: Public domain | W3C validator |