Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restcnrm | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
restcnrm | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 21910 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | simpll 767 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → 𝐽 ∈ CNrm) | |
4 | elpwi 4494 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽) → 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽)) | |
5 | 4 | adantl 485 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽)) |
6 | inex1g 5184 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
7 | 6 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐴 ∩ ∪ 𝐽) ∈ V) |
8 | restabs 21909 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽) ∧ (𝐴 ∩ ∪ 𝐽) ∈ V) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) = (𝐽 ↾t 𝑥)) | |
9 | 3, 5, 7, 8 | syl3anc 1372 | . . . . 5 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) = (𝐽 ↾t 𝑥)) |
10 | cnrmi 22104 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐽 ↾t 𝑥) ∈ Nrm) | |
11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐽 ↾t 𝑥) ∈ Nrm) |
12 | 9, 11 | eqeltrd 2833 | . . . 4 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm) |
13 | 12 | ralrimiva 3096 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm) |
14 | cnrmtop 22081 | . . . . . . 7 ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) | |
15 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ Top) |
16 | toptopon2 21662 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
17 | 15, 16 | sylib 221 | . . . . 5 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
18 | inss2 4118 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
19 | resttopon 21905 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽))) | |
20 | 17, 18, 19 | sylancl 589 | . . . 4 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽))) |
21 | iscnrm2 22082 | . . . 4 ⊢ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm)) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm)) |
23 | 13, 22 | mpbird 260 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm) |
24 | 2, 23 | eqeltrd 2833 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 Vcvv 3397 ∩ cin 3840 ⊆ wss 3841 𝒫 cpw 4485 ∪ cuni 4793 ‘cfv 6333 (class class class)co 7164 ↾t crest 16790 Topctop 21637 TopOnctopon 21654 Nrmcnrm 22054 CNrmccnrm 22055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-en 8549 df-fin 8552 df-fi 8941 df-rest 16792 df-topgen 16813 df-top 21638 df-topon 21655 df-bases 21690 df-cnrm 22062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |