MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcnrm Structured version   Visualization version   GIF version

Theorem restcnrm 21544
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
restcnrm ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)

Proof of Theorem restcnrm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 𝐽 = 𝐽
21restin 21348 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 simpll 783 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝐽 ∈ CNrm)
4 elpwi 4390 . . . . . . 7 (𝑥 ∈ 𝒫 (𝐴 𝐽) → 𝑥 ⊆ (𝐴 𝐽))
54adantl 475 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝑥 ⊆ (𝐴 𝐽))
6 inex1g 5028 . . . . . . 7 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
76ad2antlr 718 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐴 𝐽) ∈ V)
8 restabs 21347 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ⊆ (𝐴 𝐽) ∧ (𝐴 𝐽) ∈ V) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
93, 5, 7, 8syl3anc 1494 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
10 cnrmi 21542 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
1110adantlr 706 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
129, 11eqeltrd 2906 . . . 4 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
1312ralrimiva 3175 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
14 cnrmtop 21519 . . . . . . 7 (𝐽 ∈ CNrm → 𝐽 ∈ Top)
1514adantr 474 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ Top)
161toptopon 21099 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1715, 16sylib 210 . . . . 5 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 4060 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
19 resttopon 21343 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
2017, 18, 19sylancl 580 . . . 4 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
21 iscnrm2 21520 . . . 4 ((𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2220, 21syl 17 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2313, 22mpbird 249 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ CNrm)
242, 23eqeltrd 2906 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cin 3797  wss 3798  𝒫 cpw 4380   cuni 4660  cfv 6127  (class class class)co 6910  t crest 16441  Topctop 21075  TopOnctopon 21092  Nrmcnrm 21492  CNrmccnrm 21493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-oadd 7835  df-er 8014  df-en 8229  df-fin 8232  df-fi 8592  df-rest 16443  df-topgen 16464  df-top 21076  df-topon 21093  df-bases 21128  df-cnrm 21500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator