| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restcnrm | Structured version Visualization version GIF version | ||
| Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| restcnrm | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | restin 23101 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
| 3 | simpll 766 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → 𝐽 ∈ CNrm) | |
| 4 | elpwi 4558 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽) → 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽)) | |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽)) |
| 6 | inex1g 5261 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
| 7 | 6 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐴 ∩ ∪ 𝐽) ∈ V) |
| 8 | restabs 23100 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝑥 ⊆ (𝐴 ∩ ∪ 𝐽) ∧ (𝐴 ∩ ∪ 𝐽) ∈ V) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) = (𝐽 ↾t 𝑥)) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . . . 5 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) = (𝐽 ↾t 𝑥)) |
| 10 | cnrmi 23295 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐽 ↾t 𝑥) ∈ Nrm) | |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → (𝐽 ↾t 𝑥) ∈ Nrm) |
| 12 | 9, 11 | eqeltrd 2833 | . . . 4 ⊢ (((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm) |
| 13 | 12 | ralrimiva 3125 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm) |
| 14 | cnrmtop 23272 | . . . . . . 7 ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Top) | |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ Top) |
| 16 | toptopon2 22853 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 17 | 15, 16 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 18 | inss2 4187 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
| 19 | resttopon 23096 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽))) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽))) |
| 21 | iscnrm2 23273 | . . . 4 ⊢ ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ (TopOn‘(𝐴 ∩ ∪ 𝐽)) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm)) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 ∩ ∪ 𝐽)((𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ↾t 𝑥) ∈ Nrm)) |
| 23 | 13, 22 | mpbird 257 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ CNrm) |
| 24 | 2, 23 | eqeltrd 2833 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ CNrm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 ↾t crest 17331 Topctop 22828 TopOnctopon 22845 Nrmcnrm 23245 CNrmccnrm 23246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-en 8880 df-fin 8883 df-fi 9306 df-rest 17333 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cnrm 23253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |