MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcnrm Structured version   Visualization version   GIF version

Theorem restcnrm 23256
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
restcnrm ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)

Proof of Theorem restcnrm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 𝐽 = 𝐽
21restin 23060 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 simpll 766 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝐽 ∈ CNrm)
4 elpwi 4573 . . . . . . 7 (𝑥 ∈ 𝒫 (𝐴 𝐽) → 𝑥 ⊆ (𝐴 𝐽))
54adantl 481 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝑥 ⊆ (𝐴 𝐽))
6 inex1g 5277 . . . . . . 7 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
76ad2antlr 727 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐴 𝐽) ∈ V)
8 restabs 23059 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ⊆ (𝐴 𝐽) ∧ (𝐴 𝐽) ∈ V) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
93, 5, 7, 8syl3anc 1373 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
10 cnrmi 23254 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
1110adantlr 715 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
129, 11eqeltrd 2829 . . . 4 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
1312ralrimiva 3126 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
14 cnrmtop 23231 . . . . . . 7 (𝐽 ∈ CNrm → 𝐽 ∈ Top)
1514adantr 480 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ Top)
16 toptopon2 22812 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1715, 16sylib 218 . . . . 5 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 4204 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
19 resttopon 23055 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
2017, 18, 19sylancl 586 . . . 4 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
21 iscnrm2 23232 . . . 4 ((𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2220, 21syl 17 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2313, 22mpbird 257 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ CNrm)
242, 23eqeltrd 2829 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  Nrmcnrm 23204  CNrmccnrm 23205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cnrm 23212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator