MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcnrm Structured version   Visualization version   GIF version

Theorem restcnrm 23391
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
restcnrm ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)

Proof of Theorem restcnrm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21restin 23195 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) = (𝐽t (𝐴 𝐽)))
3 simpll 766 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝐽 ∈ CNrm)
4 elpwi 4629 . . . . . . 7 (𝑥 ∈ 𝒫 (𝐴 𝐽) → 𝑥 ⊆ (𝐴 𝐽))
54adantl 481 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → 𝑥 ⊆ (𝐴 𝐽))
6 inex1g 5337 . . . . . . 7 (𝐴𝑉 → (𝐴 𝐽) ∈ V)
76ad2antlr 726 . . . . . 6 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐴 𝐽) ∈ V)
8 restabs 23194 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ⊆ (𝐴 𝐽) ∧ (𝐴 𝐽) ∈ V) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
93, 5, 7, 8syl3anc 1371 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) = (𝐽t 𝑥))
10 cnrmi 23389 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
1110adantlr 714 . . . . 5 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → (𝐽t 𝑥) ∈ Nrm)
129, 11eqeltrd 2844 . . . 4 (((𝐽 ∈ CNrm ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 (𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
1312ralrimiva 3152 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm)
14 cnrmtop 23366 . . . . . . 7 (𝐽 ∈ CNrm → 𝐽 ∈ Top)
1514adantr 480 . . . . . 6 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ Top)
16 toptopon2 22945 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1715, 16sylib 218 . . . . 5 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
18 inss2 4259 . . . . 5 (𝐴 𝐽) ⊆ 𝐽
19 resttopon 23190 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐴 𝐽) ⊆ 𝐽) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
2017, 18, 19sylancl 585 . . . 4 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)))
21 iscnrm2 23367 . . . 4 ((𝐽t (𝐴 𝐽)) ∈ (TopOn‘(𝐴 𝐽)) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2220, 21syl 17 . . 3 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → ((𝐽t (𝐴 𝐽)) ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 (𝐴 𝐽)((𝐽t (𝐴 𝐽)) ↾t 𝑥) ∈ Nrm))
2313, 22mpbird 257 . 2 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t (𝐴 𝐽)) ∈ CNrm)
242, 23eqeltrd 2844 1 ((𝐽 ∈ CNrm ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ CNrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937  Nrmcnrm 23339  CNrmccnrm 23340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cnrm 23347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator