MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm2 Structured version   Visualization version   GIF version

Theorem iscnrm2 23367
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
iscnrm2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm2
StepHypRef Expression
1 topontop 22940 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2740 . . . . 5 𝐽 = 𝐽
32iscnrm 23352 . . . 4 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
43baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
6 toponuni 22941 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76pweqd 4639 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
87raleqdv 3334 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
95, 8bitr4d 282 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3067  𝒫 cpw 4622   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937  Nrmcnrm 23339  CNrmccnrm 23340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-topon 22938  df-cnrm 23347
This theorem is referenced by:  restcnrm  23391
  Copyright terms: Public domain W3C validator