MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm2 Structured version   Visualization version   GIF version

Theorem iscnrm2 22397
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
iscnrm2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm2
StepHypRef Expression
1 topontop 21970 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2738 . . . . 5 𝐽 = 𝐽
32iscnrm 22382 . . . 4 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
43baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
6 toponuni 21971 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76pweqd 4549 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
87raleqdv 3339 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
95, 8bitr4d 281 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  wral 3063  𝒫 cpw 4530   cuni 4836  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967  Nrmcnrm 22369  CNrmccnrm 22370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-topon 21968  df-cnrm 22377
This theorem is referenced by:  restcnrm  22421
  Copyright terms: Public domain W3C validator