MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm2 Structured version   Visualization version   GIF version

Theorem iscnrm2 21945
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
iscnrm2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm2
StepHypRef Expression
1 topontop 21520 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2821 . . . . 5 𝐽 = 𝐽
32iscnrm 21930 . . . 4 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
43baib 538 . . 3 (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
6 toponuni 21521 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76pweqd 4557 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
87raleqdv 3415 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝐽(𝐽t 𝑥) ∈ Nrm))
95, 8bitr4d 284 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ CNrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2110  wral 3138  𝒫 cpw 4538   cuni 4837  cfv 6354  (class class class)co 7155  t crest 16693  Topctop 21500  TopOnctopon 21517  Nrmcnrm 21917  CNrmccnrm 21918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-topon 21518  df-cnrm 21925
This theorem is referenced by:  restcnrm  21969
  Copyright terms: Public domain W3C validator