![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmtop | Structured version Visualization version GIF version |
Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
nrmtop | ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrm 23364 | . 2 ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ‘cfv 6573 Topctop 22920 Clsdccld 23045 clsccl 23047 Nrmcnrm 23339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-nrm 23346 |
This theorem is referenced by: pnrmtop 23370 nrmsep 23386 isnrm2 23387 isnrm3 23388 nrmr0reg 23778 kqnrm 23781 nrmhmph 23823 |
Copyright terms: Public domain | W3C validator |