Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtop Structured version   Visualization version   GIF version

Theorem nrmtop 21469
 Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmtop (𝐽 ∈ Nrm → 𝐽 ∈ Top)

Proof of Theorem nrmtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 21468 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 492 1 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385   ∈ wcel 2157  ∀wral 3089  ∃wrex 3090   ∩ cin 3768   ⊆ wss 3769  𝒫 cpw 4349  ‘cfv 6101  Topctop 21026  Clsdccld 21149  clsccl 21151  Nrmcnrm 21443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-iota 6064  df-fv 6109  df-nrm 21450 This theorem is referenced by:  pnrmtop  21474  nrmsep  21490  isnrm2  21491  isnrm3  21492  nrmr0reg  21881  kqnrm  21884  nrmhmph  21926
 Copyright terms: Public domain W3C validator