MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtop Structured version   Visualization version   GIF version

Theorem nrmtop 23223
Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmtop (𝐽 ∈ Nrm → 𝐽 ∈ Top)

Proof of Theorem nrmtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 23222 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 497 1 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  cfv 6511  Topctop 22780  Clsdccld 22903  clsccl 22905  Nrmcnrm 23197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-nrm 23204
This theorem is referenced by:  pnrmtop  23228  nrmsep  23244  isnrm2  23245  isnrm3  23246  nrmr0reg  23636  kqnrm  23639  nrmhmph  23681
  Copyright terms: Public domain W3C validator