![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmtop | Structured version Visualization version GIF version |
Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
nrmtop | ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrm 21468 | . 2 ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
2 | 1 | simplbi 492 | 1 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 ∩ cin 3768 ⊆ wss 3769 𝒫 cpw 4349 ‘cfv 6101 Topctop 21026 Clsdccld 21149 clsccl 21151 Nrmcnrm 21443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-nrm 21450 |
This theorem is referenced by: pnrmtop 21474 nrmsep 21490 isnrm2 21491 isnrm3 21492 nrmr0reg 21881 kqnrm 21884 nrmhmph 21926 |
Copyright terms: Public domain | W3C validator |