| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmtop | Structured version Visualization version GIF version | ||
| Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| nrmtop | ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrm 23251 | . 2 ⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝐽 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ‘cfv 6486 Topctop 22809 Clsdccld 22932 clsccl 22934 Nrmcnrm 23226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-nrm 23233 |
| This theorem is referenced by: pnrmtop 23257 nrmsep 23273 isnrm2 23274 isnrm3 23275 nrmr0reg 23665 kqnrm 23668 nrmhmph 23710 |
| Copyright terms: Public domain | W3C validator |