MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtop Structured version   Visualization version   GIF version

Theorem nrmtop 22487
Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmtop (𝐽 ∈ Nrm → 𝐽 ∈ Top)

Proof of Theorem nrmtop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 22486 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑧𝐽 (𝑦𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑥)))
21simplbi 498 1 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533  cfv 6433  Topctop 22042  Clsdccld 22167  clsccl 22169  Nrmcnrm 22461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-nrm 22468
This theorem is referenced by:  pnrmtop  22492  nrmsep  22508  isnrm2  22509  isnrm3  22510  nrmr0reg  22900  kqnrm  22903  nrmhmph  22945
  Copyright terms: Public domain W3C validator