| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > colleq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| colleq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 = 𝐺) | |
| 2 | eqidd 2734 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐴) | |
| 3 | 1, 2 | colleq12d 44370 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Coll ccoll 44367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-iun 4943 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-scott 44353 df-coll 44368 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |