Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq1 Structured version   Visualization version   GIF version

Theorem colleq1 44230
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
colleq1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))

Proof of Theorem colleq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2735 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2colleq12d 44229 1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   Coll ccoll 44226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-iun 4973  df-br 5124  df-opab 5186  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-scott 44212  df-coll 44227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator