Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq1 Structured version   Visualization version   GIF version

Theorem colleq1 44371
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
colleq1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))

Proof of Theorem colleq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2734 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2colleq12d 44370 1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   Coll ccoll 44367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-iun 4943  df-br 5094  df-opab 5156  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-scott 44353  df-coll 44368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator