Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq1 Structured version   Visualization version   GIF version

Theorem colleq1 42245
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
colleq1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))

Proof of Theorem colleq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2738 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2colleq12d 42244 1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   Coll ccoll 42241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-iun 4947  df-br 5097  df-opab 5159  df-cnv 5632  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-scott 42227  df-coll 42242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator