Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq1 Structured version   Visualization version   GIF version

Theorem colleq1 44266
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
colleq1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))

Proof of Theorem colleq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2738 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2colleq12d 44265 1 (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   Coll ccoll 44262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-iun 5001  df-br 5152  df-opab 5214  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-scott 44248  df-coll 44263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator