Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colleq2 Structured version   Visualization version   GIF version

Theorem colleq2 44267
Description: Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Assertion
Ref Expression
colleq2 (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵))

Proof of Theorem colleq2
StepHypRef Expression
1 eqidd 2731 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2colleq12d 44265 1 (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   Coll ccoll 44262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-iun 4941  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-scott 44248  df-coll 44263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator