MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfng Structured version   Visualization version   GIF version

Theorem sbcfng 6655
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfng (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfng
StepHypRef Expression
1 df-fn 6491 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
21a1i 11 . . 3 (𝑋𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)))
32sbcbidv 3793 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴)))
4 sbcfung 6512 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun 𝑋 / 𝑥𝐹))
5 sbceqg 4361 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴𝑋 / 𝑥dom 𝐹 = 𝑋 / 𝑥𝐴))
6 csbdm 5843 . . . . . 6 𝑋 / 𝑥dom 𝐹 = dom 𝑋 / 𝑥𝐹
76eqeq1i 2738 . . . . 5 (𝑋 / 𝑥dom 𝐹 = 𝑋 / 𝑥𝐴 ↔ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴)
85, 7bitrdi 287 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴))
94, 8anbi12d 632 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]Fun 𝐹[𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun 𝑋 / 𝑥𝐹 ∧ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴)))
10 sbcan 3787 . . 3 ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹[𝑋 / 𝑥]dom 𝐹 = 𝐴))
11 df-fn 6491 . . 3 (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ↔ (Fun 𝑋 / 𝑥𝐹 ∧ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴))
129, 10, 113bitr4g 314 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ 𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
133, 12bitrd 279 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  [wsbc 3737  csb 3846  dom cdm 5621  Fun wfun 6482   Fn wfn 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-fun 6490  df-fn 6491
This theorem is referenced by:  sbcfg  6656
  Copyright terms: Public domain W3C validator