Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcfng | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
sbcfng | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 6421 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
3 | 2 | sbcbidv 3770 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ [𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
4 | sbcfung 6442 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝑋 / 𝑥⦌𝐹)) | |
5 | sbceqg 4340 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ ⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
6 | csbdm 5795 | . . . . . 6 ⊢ ⦋𝑋 / 𝑥⦌dom 𝐹 = dom ⦋𝑋 / 𝑥⦌𝐹 | |
7 | 6 | eqeq1i 2743 | . . . . 5 ⊢ (⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴) |
8 | 5, 7 | bitrdi 286 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
9 | 4, 8 | anbi12d 630 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴))) |
10 | sbcan 3763 | . . 3 ⊢ ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴)) | |
11 | df-fn 6421 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
12 | 9, 10, 11 | 3bitr4g 313 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
13 | 3, 12 | bitrd 278 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 [wsbc 3711 ⦋csb 3828 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 |
This theorem is referenced by: sbcfg 6582 |
Copyright terms: Public domain | W3C validator |