| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcfng | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| sbcfng | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 6491 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
| 3 | 2 | sbcbidv 3793 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ [𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
| 4 | sbcfung 6512 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝑋 / 𝑥⦌𝐹)) | |
| 5 | sbceqg 4361 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ ⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
| 6 | csbdm 5843 | . . . . . 6 ⊢ ⦋𝑋 / 𝑥⦌dom 𝐹 = dom ⦋𝑋 / 𝑥⦌𝐹 | |
| 7 | 6 | eqeq1i 2738 | . . . . 5 ⊢ (⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴) |
| 8 | 5, 7 | bitrdi 287 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
| 9 | 4, 8 | anbi12d 632 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴))) |
| 10 | sbcan 3787 | . . 3 ⊢ ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴)) | |
| 11 | df-fn 6491 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
| 12 | 9, 10, 11 | 3bitr4g 314 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| 13 | 3, 12 | bitrd 279 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 [wsbc 3737 ⦋csb 3846 dom cdm 5621 Fun wfun 6482 Fn wfn 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6490 df-fn 6491 |
| This theorem is referenced by: sbcfg 6656 |
| Copyright terms: Public domain | W3C validator |