MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfng Structured version   Visualization version   GIF version

Theorem sbcfng 6707
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfng (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfng
StepHypRef Expression
1 df-fn 6539 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
21a1i 11 . . 3 (𝑋𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)))
32sbcbidv 3831 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴)))
4 sbcfung 6565 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun 𝑋 / 𝑥𝐹))
5 sbceqg 4404 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴𝑋 / 𝑥dom 𝐹 = 𝑋 / 𝑥𝐴))
6 csbdm 5890 . . . . . 6 𝑋 / 𝑥dom 𝐹 = dom 𝑋 / 𝑥𝐹
76eqeq1i 2731 . . . . 5 (𝑋 / 𝑥dom 𝐹 = 𝑋 / 𝑥𝐴 ↔ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴)
85, 7bitrdi 287 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴))
94, 8anbi12d 630 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]Fun 𝐹[𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun 𝑋 / 𝑥𝐹 ∧ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴)))
10 sbcan 3824 . . 3 ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹[𝑋 / 𝑥]dom 𝐹 = 𝐴))
11 df-fn 6539 . . 3 (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ↔ (Fun 𝑋 / 𝑥𝐹 ∧ dom 𝑋 / 𝑥𝐹 = 𝑋 / 𝑥𝐴))
129, 10, 113bitr4g 314 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ 𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
133, 12bitrd 279 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  [wsbc 3772  csb 3888  dom cdm 5669  Fun wfun 6530   Fn wfn 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-fun 6538  df-fn 6539
This theorem is referenced by:  sbcfg  6708
  Copyright terms: Public domain W3C validator