Step | Hyp | Ref
| Expression |
1 | | fmpocos.1 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ 𝐶) |
2 | 1 | ralrimivva 3201 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑅 ∈ 𝐶) |
3 | | eqid 2733 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) |
4 | 3 | fmpo 8054 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝑅 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
5 | 2, 4 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
6 | | nfcv 2904 |
. . . . . . 7
⊢
Ⅎ𝑢𝑅 |
7 | | nfcv 2904 |
. . . . . . 7
⊢
Ⅎ𝑣𝑅 |
8 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑣 |
9 | | nfcsb1v 3919 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝑅 |
10 | 8, 9 | nfcsbw 3921 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 |
11 | | nfcsb1v 3919 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 |
12 | | csbeq1a 3908 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → 𝑅 = ⦋𝑢 / 𝑥⦌𝑅) |
13 | | csbeq1a 3908 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
14 | 12, 13 | sylan9eq 2793 |
. . . . . . 7
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
15 | 6, 7, 10, 11, 14 | cbvmpo 7503 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
16 | | vex 3479 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
17 | | vex 3479 |
. . . . . . . . 9
⊢ 𝑣 ∈ V |
18 | 16, 17 | op2ndd 7986 |
. . . . . . . 8
⊢ (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd ‘𝑤) = 𝑣) |
19 | 16, 17 | op1std 7985 |
. . . . . . . . 9
⊢ (𝑤 = ⟨𝑢, 𝑣⟩ → (1st ‘𝑤) = 𝑢) |
20 | 19 | csbeq1d 3898 |
. . . . . . . 8
⊢ (𝑤 = ⟨𝑢, 𝑣⟩ → ⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑢 / 𝑥⦌𝑅) |
21 | 18, 20 | csbeq12dv 3903 |
. . . . . . 7
⊢ (𝑤 = ⟨𝑢, 𝑣⟩ → ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
22 | 21 | mpompt 7522 |
. . . . . 6
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅) |
23 | 15, 22 | eqtr4i 2764 |
. . . . 5
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅) |
24 | 23 | fmpt 7110 |
. . . 4
⊢
(∀𝑤 ∈
(𝐴 × 𝐵)⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅):(𝐴 × 𝐵)⟶𝐶) |
25 | 5, 24 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ (𝐴 × 𝐵)⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 ∈ 𝐶) |
26 | | fmpocos.2 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅)) |
27 | 26, 23 | eqtrdi 2789 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(2nd
‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅)) |
28 | | fmpocos.3 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐶 ↦ 𝑆)) |
29 | 25, 27, 28 | fmptcos 7129 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆)) |
30 | 21 | csbeq1d 3898 |
. . . . 5
⊢ (𝑤 = ⟨𝑢, 𝑣⟩ →
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆 = ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
31 | 30 | mpompt 7522 |
. . . 4
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
32 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑢⦋𝑅 / 𝑧⦌𝑆 |
33 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑣⦋𝑅 / 𝑧⦌𝑆 |
34 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑥𝑆 |
35 | 10, 34 | nfcsbw 3921 |
. . . . 5
⊢
Ⅎ𝑥⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆 |
36 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑦𝑆 |
37 | 11, 36 | nfcsbw 3921 |
. . . . 5
⊢
Ⅎ𝑦⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆 |
38 | 14 | csbeq1d 3898 |
. . . . 5
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ⦋𝑅 / 𝑧⦌𝑆 = ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
39 | 32, 33, 35, 37, 38 | cbvmpo 7503 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) = (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 ↦ ⦋⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝑅 / 𝑧⦌𝑆) |
40 | 31, 39 | eqtr4i 2764 |
. . 3
⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) |
41 | | fmpocos.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ⦋𝑅 / 𝑧⦌𝑆 = 𝑇) |
42 | 41 | 3impb 1116 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⦋𝑅 / 𝑧⦌𝑆 = 𝑇) |
43 | 42 | mpoeq3dva 7486 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ⦋𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |
44 | 40, 43 | eqtrid 2785 |
. 2
⊢ (𝜑 → (𝑤 ∈ (𝐴 × 𝐵) ↦
⦋⦋(2nd ‘𝑤) / 𝑦⦌⦋(1st
‘𝑤) / 𝑥⦌𝑅 / 𝑧⦌𝑆) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |
45 | 29, 44 | eqtrd 2773 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) |