MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvfval Structured version   Visualization version   GIF version

Theorem selvfval 22077
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvffval.i (𝜑𝐼𝑉)
selvffval.r (𝜑𝑅𝑊)
selvfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
selvfval (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
Distinct variable groups:   𝑓,𝐼,𝑢,𝑡,𝑐,𝑑,𝑥   𝑅,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥   𝑓,𝐽,𝑢,𝑡,𝑐,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)   𝑉(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)   𝑊(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)

Proof of Theorem selvfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 selvffval.i . . 3 (𝜑𝐼𝑉)
2 selvffval.r . . 3 (𝜑𝑅𝑊)
31, 2selvffval 22076 . 2 (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
4 difeq2 4100 . . . . . 6 (𝑗 = 𝐽 → (𝐼𝑗) = (𝐼𝐽))
54oveq1d 7425 . . . . 5 (𝑗 = 𝐽 → ((𝐼𝑗) mPoly 𝑅) = ((𝐼𝐽) mPoly 𝑅))
6 oveq1 7417 . . . . . 6 (𝑗 = 𝐽 → (𝑗 mPoly 𝑢) = (𝐽 mPoly 𝑢))
7 eleq2 2824 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑥𝑗𝑥𝐽))
8 oveq1 7417 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝑗 mVar 𝑢) = (𝐽 mVar 𝑢))
98fveq1d 6883 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝑗 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑢)‘𝑥))
104oveq1d 7425 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼𝑗) mVar 𝑅) = ((𝐼𝐽) mVar 𝑅))
1110fveq1d 6883 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼𝑗) mVar 𝑅)‘𝑥) = (((𝐼𝐽) mVar 𝑅)‘𝑥))
1211fveq2d 6885 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)) = (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
137, 9, 12ifbieq12d 4534 . . . . . . . . . 10 (𝑗 = 𝐽 → if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
1413mpteq2dv 5220 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
1514fveq2d 6885 . . . . . . . 8 (𝑗 = 𝐽 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1615csbeq2dv 3886 . . . . . . 7 (𝑗 = 𝐽(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1716csbeq2dv 3886 . . . . . 6 (𝑗 = 𝐽(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
186, 17csbeq12dv 3888 . . . . 5 (𝑗 = 𝐽(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
195, 18csbeq12dv 3888 . . . 4 (𝑗 = 𝐽((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
2019mpteq2dv 5220 . . 3 (𝑗 = 𝐽 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
2120adantl 481 . 2 ((𝜑𝑗 = 𝐽) → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
22 selvfval.j . . 3 (𝜑𝐽𝐼)
231, 22sselpwd 5303 . 2 (𝜑𝐽 ∈ 𝒫 𝐼)
24 fvex 6894 . . 3 (Base‘(𝐼 mPoly 𝑅)) ∈ V
25 mptexg 7218 . . 3 ((Base‘(𝐼 mPoly 𝑅)) ∈ V → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))) ∈ V)
2624, 25mp1i 13 . 2 (𝜑 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))) ∈ V)
273, 21, 23, 26fvmptd 6998 1 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  csb 3879  cdif 3928  wss 3931  ifcif 4505  𝒫 cpw 4580  cmpt 5206  ran crn 5660  ccom 5663  cfv 6536  (class class class)co 7410  Basecbs 17233  algSccascl 21817   mVar cmvr 21870   mPoly cmpl 21871   evalSub ces 22035   selectVars cslv 22071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-selv 22075
This theorem is referenced by:  selvval  22078
  Copyright terms: Public domain W3C validator