Step | Hyp | Ref
| Expression |
1 | | selvffval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
2 | | selvffval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
3 | 1, 2 | selvffval 20872 |
. 2
⊢ (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))))) |
4 | | difeq2 4023 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝐼 ∖ 𝑗) = (𝐼 ∖ 𝐽)) |
5 | 4 | oveq1d 7166 |
. . . . 5
⊢ (𝑗 = 𝐽 → ((𝐼 ∖ 𝑗) mPoly 𝑅) = ((𝐼 ∖ 𝐽) mPoly 𝑅)) |
6 | | oveq1 7158 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝑗 mPoly 𝑢) = (𝐽 mPoly 𝑢)) |
7 | | eleq2 2841 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝑗 ↔ 𝑥 ∈ 𝐽)) |
8 | | oveq1 7158 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (𝑗 mVar 𝑢) = (𝐽 mVar 𝑢)) |
9 | 8 | fveq1d 6661 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ((𝑗 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑢)‘𝑥)) |
10 | 4 | oveq1d 7166 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → ((𝐼 ∖ 𝑗) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅)) |
11 | 10 | fveq1d 6661 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → (((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥) = (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) |
12 | 11 | fveq2d 6663 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)) = (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) |
13 | 7, 9, 12 | ifbieq12d 4449 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))) = if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
14 | 13 | mpteq2dv 5129 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
15 | 14 | fveq2d 6663 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
16 | 15 | csbeq2dv 3813 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
17 | 16 | csbeq2dv 3813 |
. . . . . 6
⊢ (𝑗 = 𝐽 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
18 | 6, 17 | csbeq12dv 3815 |
. . . . 5
⊢ (𝑗 = 𝐽 → ⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) = ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
19 | 5, 18 | csbeq12dv 3815 |
. . . 4
⊢ (𝑗 = 𝐽 → ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥))))) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
20 | 19 | mpteq2dv 5129 |
. . 3
⊢ (𝑗 = 𝐽 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
21 | 20 | adantl 486 |
. 2
⊢ ((𝜑 ∧ 𝑗 = 𝐽) → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
22 | | selvfval.j |
. . 3
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
23 | 1, 22 | sselpwd 5197 |
. 2
⊢ (𝜑 → 𝐽 ∈ 𝒫 𝐼) |
24 | | fvex 6672 |
. . 3
⊢
(Base‘(𝐼 mPoly
𝑅)) ∈
V |
25 | | mptexg 6976 |
. . 3
⊢
((Base‘(𝐼
mPoly 𝑅)) ∈ V →
(𝑓 ∈
(Base‘(𝐼 mPoly 𝑅)) ↦
⦋((𝐼 ∖
𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) ∈ V) |
26 | 24, 25 | mp1i 13 |
. 2
⊢ (𝜑 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) ∈ V) |
27 | 3, 21, 23, 26 | fvmptd 6767 |
1
⊢ (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |