MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvfval Structured version   Visualization version   GIF version

Theorem selvfval 21237
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvffval.i (𝜑𝐼𝑉)
selvffval.r (𝜑𝑅𝑊)
selvfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
selvfval (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
Distinct variable groups:   𝑓,𝐼,𝑢,𝑡,𝑐,𝑑,𝑥   𝑅,𝑓,𝑢,𝑡,𝑐,𝑑,𝑥   𝑓,𝐽,𝑢,𝑡,𝑐,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)   𝑉(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)   𝑊(𝑥,𝑢,𝑡,𝑓,𝑐,𝑑)

Proof of Theorem selvfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 selvffval.i . . 3 (𝜑𝐼𝑉)
2 selvffval.r . . 3 (𝜑𝑅𝑊)
31, 2selvffval 21236 . 2 (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))))))
4 difeq2 4047 . . . . . 6 (𝑗 = 𝐽 → (𝐼𝑗) = (𝐼𝐽))
54oveq1d 7270 . . . . 5 (𝑗 = 𝐽 → ((𝐼𝑗) mPoly 𝑅) = ((𝐼𝐽) mPoly 𝑅))
6 oveq1 7262 . . . . . 6 (𝑗 = 𝐽 → (𝑗 mPoly 𝑢) = (𝐽 mPoly 𝑢))
7 eleq2 2827 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑥𝑗𝑥𝐽))
8 oveq1 7262 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (𝑗 mVar 𝑢) = (𝐽 mVar 𝑢))
98fveq1d 6758 . . . . . . . . . . 11 (𝑗 = 𝐽 → ((𝑗 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑢)‘𝑥))
104oveq1d 7270 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((𝐼𝑗) mVar 𝑅) = ((𝐼𝐽) mVar 𝑅))
1110fveq1d 6758 . . . . . . . . . . . 12 (𝑗 = 𝐽 → (((𝐼𝑗) mVar 𝑅)‘𝑥) = (((𝐼𝐽) mVar 𝑅)‘𝑥))
1211fveq2d 6760 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)) = (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
137, 9, 12ifbieq12d 4484 . . . . . . . . . 10 (𝑗 = 𝐽 → if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
1413mpteq2dv 5172 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
1514fveq2d 6760 . . . . . . . 8 (𝑗 = 𝐽 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1615csbeq2dv 3835 . . . . . . 7 (𝑗 = 𝐽(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1716csbeq2dv 3835 . . . . . 6 (𝑗 = 𝐽(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
186, 17csbeq12dv 3837 . . . . 5 (𝑗 = 𝐽(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
195, 18csbeq12dv 3837 . . . 4 (𝑗 = 𝐽((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
2019mpteq2dv 5172 . . 3 (𝑗 = 𝐽 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
2120adantl 481 . 2 ((𝜑𝑗 = 𝐽) → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝑗) mPoly 𝑅) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝑗) mVar 𝑅)‘𝑥)))))) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
22 selvfval.j . . 3 (𝜑𝐽𝐼)
231, 22sselpwd 5245 . 2 (𝜑𝐽 ∈ 𝒫 𝐼)
24 fvex 6769 . . 3 (Base‘(𝐼 mPoly 𝑅)) ∈ V
25 mptexg 7079 . . 3 ((Base‘(𝐼 mPoly 𝑅)) ∈ V → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))) ∈ V)
2624, 25mp1i 13 . 2 (𝜑 → (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))) ∈ V)
273, 21, 23, 26fvmptd 6864 1 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cdif 3880  wss 3883  ifcif 4456  𝒫 cpw 4530  cmpt 5153  ran crn 5581  ccom 5584  cfv 6418  (class class class)co 7255  Basecbs 16840  algSccascl 20969   mVar cmvr 21018   mPoly cmpl 21019   evalSub ces 21190   selectVars cslv 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-selv 21232
This theorem is referenced by:  selvval  21238
  Copyright terms: Public domain W3C validator