MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   GIF version

Theorem bpolylem 15973
Description: Lemma for bpolyval 15974. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
bpoly.2 𝐹 = wrecs( < , ℕ0, 𝐺)
Assertion
Ref Expression
bpolylem ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝐹   𝑔,𝑁,𝑘,𝑛   𝑔,𝑋,𝑘,𝑛
Allowed substitution hints:   𝐺(𝑔,𝑘,𝑛)

Proof of Theorem bpolylem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
21oveq1d 7368 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32csbeq2dv 3860 . . . . . . . . 9 (𝑥 = 𝑋(♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
43mpteq2dv 5189 . . . . . . . 8 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))
5 bpoly.1 . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
64, 5eqtr4di 2782 . . . . . . 7 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺)
7 wrecseq3 8257 . . . . . . 7 ((𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
86, 7syl 17 . . . . . 6 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
9 bpoly.2 . . . . . 6 𝐹 = wrecs( < , ℕ0, 𝐺)
108, 9eqtr4di 2782 . . . . 5 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = 𝐹)
1110fveq1d 6828 . . . 4 (𝑥 = 𝑋 → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑚))
12 fveq2 6826 . . . 4 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
1311, 12sylan9eqr 2786 . . 3 ((𝑚 = 𝑁𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑁))
14 df-bpoly 15972 . . 3 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
15 fvex 6839 . . 3 (𝐹𝑁) ∈ V
1613, 14, 15ovmpoa 7508 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = (𝐹𝑁))
17 ltweuz 13886 . . . . 5 < We (ℤ‘0)
18 nn0uz 12795 . . . . . 6 0 = (ℤ‘0)
19 weeq2 5611 . . . . . 6 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
2018, 19ax-mp 5 . . . . 5 ( < We ℕ0 ↔ < We (ℤ‘0))
2117, 20mpbir 231 . . . 4 < We ℕ0
22 nn0ex 12408 . . . . 5 0 ∈ V
23 exse 5583 . . . . 5 (ℕ0 ∈ V → < Se ℕ0)
2422, 23ax-mp 5 . . . 4 < Se ℕ0
259wfr2 8267 . . . 4 ((( < We ℕ0 ∧ < Se ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2621, 24, 25mpanl12 702 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2726adantr 480 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
28 prednn0 13573 . . . . . 6 (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2928adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
3029reseq2d 5934 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹 ↾ Pred( < , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1))))
3130fveq2d 6830 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))))
329wfrfun 8263 . . . . . . 7 (( < We ℕ0 ∧ < Se ℕ0) → Fun 𝐹)
3321, 24, 32mp2an 692 . . . . . 6 Fun 𝐹
34 ovex 7386 . . . . . 6 (0...(𝑁 − 1)) ∈ V
35 resfunexg 7155 . . . . . 6 ((Fun 𝐹 ∧ (0...(𝑁 − 1)) ∈ V) → (𝐹 ↾ (0...(𝑁 − 1))) ∈ V)
3633, 34, 35mp2an 692 . . . . 5 (𝐹 ↾ (0...(𝑁 − 1))) ∈ V
37 dmeq 5850 . . . . . . . . 9 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1))))
389wfr1 8266 . . . . . . . . . . . 12 (( < We ℕ0 ∧ < Se ℕ0) → 𝐹 Fn ℕ0)
3921, 24, 38mp2an 692 . . . . . . . . . . 11 𝐹 Fn ℕ0
40 fz0ssnn0 13543 . . . . . . . . . . 11 (0...(𝑁 − 1)) ⊆ ℕ0
41 fnssres 6609 . . . . . . . . . . 11 ((𝐹 Fn ℕ0 ∧ (0...(𝑁 − 1)) ⊆ ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)))
4239, 40, 41mp2an 692 . . . . . . . . . 10 (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))
4342fndmi 6590 . . . . . . . . 9 dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1))
4437, 43eqtrdi 2780 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1)))
4544fveq2d 6830 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) = (♯‘(0...(𝑁 − 1))))
46 fveq1 6825 . . . . . . . . . . . 12 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘))
47 fvres 6845 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹𝑘))
4846, 47sylan9eq 2784 . . . . . . . . . . 11 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔𝑘) = (𝐹𝑘))
4948oveq1d 7368 . . . . . . . . . 10 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑛𝑘) + 1)))
5049oveq2d 7369 . . . . . . . . 9 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
5144, 50sumeq12rdv 15632 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
5251oveq2d 7369 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5345, 52csbeq12dv 3862 . . . . . 6 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
54 ovex 7386 . . . . . . 7 ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5554csbex 5253 . . . . . 6 (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5653, 5, 55fvmpt 6934 . . . . 5 ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5736, 56ax-mp 5 . . . 4 (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
58 nfcvd 2892 . . . . . . 7 (𝑁 ∈ ℕ0𝑛((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
59 oveq2 7361 . . . . . . . 8 (𝑛 = 𝑁 → (𝑋𝑛) = (𝑋𝑁))
60 oveq1 7360 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
61 oveq1 7360 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
6261oveq1d 7368 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝑛𝑘) + 1) = ((𝑁𝑘) + 1))
6362oveq2d 7369 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝐹𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
6460, 63oveq12d 7371 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6564sumeq2sdv 15628 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6659, 65oveq12d 7371 . . . . . . 7 (𝑛 = 𝑁 → ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6758, 66csbiegf 3886 . . . . . 6 (𝑁 ∈ ℕ0𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6867adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
69 nn0z 12514 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
70 fz01en 13473 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
7169, 70syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ≈ (1...𝑁))
72 fzfi 13897 . . . . . . . . . 10 (0...(𝑁 − 1)) ∈ Fin
73 fzfi 13897 . . . . . . . . . 10 (1...𝑁) ∈ Fin
74 hashen 14272 . . . . . . . . . 10 (((0...(𝑁 − 1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)))
7572, 73, 74mp2an 692 . . . . . . . . 9 ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))
7671, 75sylibr 234 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)))
77 hashfz1 14271 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
7876, 77eqtrd 2764 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = 𝑁)
7978adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) = 𝑁)
8079csbeq1d 3857 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
81 elfznn0 13541 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
82 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
83 fveq2 6826 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8411, 83sylan9eqr 2786 . . . . . . . . . . 11 ((𝑚 = 𝑘𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑘))
85 fvex 6839 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
8684, 14, 85ovmpoa 7508 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8781, 82, 86syl2anr 597 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8887oveq1d 7368 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
8988oveq2d 7369 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9089sumeq2dv 15627 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9190oveq2d 7369 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
9268, 80, 913eqtr4d 2774 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9357, 92eqtrid 2776 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9431, 93eqtrd 2764 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9516, 27, 943eqtrd 2768 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  wss 3905   class class class wbr 5095  cmpt 5176   Se wse 5574   We wwe 5575  dom cdm 5623  cres 5625  Predcpred 6252  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7353  wrecscwrecs 8251  cen 8876  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365   / cdiv 11795  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cexp 13986  Ccbc 14227  chash 14255  Σcsu 15611   BernPoly cbp 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-hash 14256  df-sum 15612  df-bpoly 15972
This theorem is referenced by:  bpolyval  15974
  Copyright terms: Public domain W3C validator