Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   GIF version

Theorem bpolylem 15394
 Description: Lemma for bpolyval 15395. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
bpoly.2 𝐹 = wrecs( < , ℕ0, 𝐺)
Assertion
Ref Expression
bpolylem ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝐹   𝑔,𝑁,𝑘,𝑛   𝑔,𝑋,𝑘,𝑛
Allowed substitution hints:   𝐺(𝑔,𝑘,𝑛)

Proof of Theorem bpolylem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
21oveq1d 7150 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32csbeq2dv 3835 . . . . . . . . 9 (𝑥 = 𝑋(♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
43mpteq2dv 5126 . . . . . . . 8 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))
5 bpoly.1 . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
64, 5eqtr4di 2851 . . . . . . 7 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺)
7 wrecseq3 7935 . . . . . . 7 ((𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
86, 7syl 17 . . . . . 6 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
9 bpoly.2 . . . . . 6 𝐹 = wrecs( < , ℕ0, 𝐺)
108, 9eqtr4di 2851 . . . . 5 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = 𝐹)
1110fveq1d 6647 . . . 4 (𝑥 = 𝑋 → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑚))
12 fveq2 6645 . . . 4 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
1311, 12sylan9eqr 2855 . . 3 ((𝑚 = 𝑁𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑁))
14 df-bpoly 15393 . . 3 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
15 fvex 6658 . . 3 (𝐹𝑁) ∈ V
1613, 14, 15ovmpoa 7284 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = (𝐹𝑁))
17 ltweuz 13324 . . . . 5 < We (ℤ‘0)
18 nn0uz 12268 . . . . . 6 0 = (ℤ‘0)
19 weeq2 5508 . . . . . 6 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
2018, 19ax-mp 5 . . . . 5 ( < We ℕ0 ↔ < We (ℤ‘0))
2117, 20mpbir 234 . . . 4 < We ℕ0
22 nn0ex 11891 . . . . 5 0 ∈ V
23 exse 5483 . . . . 5 (ℕ0 ∈ V → < Se ℕ0)
2422, 23ax-mp 5 . . . 4 < Se ℕ0
2521, 24, 9wfr2 7957 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2625adantr 484 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
27 prednn0 13026 . . . . . 6 (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2827adantr 484 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2928reseq2d 5818 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹 ↾ Pred( < , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1))))
3029fveq2d 6649 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))))
3121, 24, 9wfrfun 7948 . . . . . 6 Fun 𝐹
32 ovex 7168 . . . . . 6 (0...(𝑁 − 1)) ∈ V
33 resfunexg 6955 . . . . . 6 ((Fun 𝐹 ∧ (0...(𝑁 − 1)) ∈ V) → (𝐹 ↾ (0...(𝑁 − 1))) ∈ V)
3431, 32, 33mp2an 691 . . . . 5 (𝐹 ↾ (0...(𝑁 − 1))) ∈ V
35 dmeq 5736 . . . . . . . . . . 11 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1))))
3621, 24, 9wfr1 7956 . . . . . . . . . . . . 13 𝐹 Fn ℕ0
37 fz0ssnn0 12997 . . . . . . . . . . . . 13 (0...(𝑁 − 1)) ⊆ ℕ0
38 fnssres 6442 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ0 ∧ (0...(𝑁 − 1)) ⊆ ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)))
3936, 37, 38mp2an 691 . . . . . . . . . . . 12 (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))
4039fndmi 6426 . . . . . . . . . . 11 dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1))
4135, 40eqtrdi 2849 . . . . . . . . . 10 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1)))
42 fveq1 6644 . . . . . . . . . . . . 13 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘))
43 fvres 6664 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹𝑘))
4442, 43sylan9eq 2853 . . . . . . . . . . . 12 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔𝑘) = (𝐹𝑘))
4544oveq1d 7150 . . . . . . . . . . 11 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑛𝑘) + 1)))
4645oveq2d 7151 . . . . . . . . . 10 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4741, 46sumeq12rdv 15056 . . . . . . . . 9 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4847oveq2d 7151 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
4948csbeq2dv 3835 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5041fveq2d 6649 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) = (♯‘(0...(𝑁 − 1))))
5150csbeq1d 3832 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5249, 51eqtrd 2833 . . . . . 6 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
53 ovex 7168 . . . . . . 7 ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5453csbex 5179 . . . . . 6 (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5552, 5, 54fvmpt 6745 . . . . 5 ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5634, 55ax-mp 5 . . . 4 (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
57 nfcvd 2956 . . . . . . 7 (𝑁 ∈ ℕ0𝑛((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
58 oveq2 7143 . . . . . . . 8 (𝑛 = 𝑁 → (𝑋𝑛) = (𝑋𝑁))
59 oveq1 7142 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
60 oveq1 7142 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
6160oveq1d 7150 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝑛𝑘) + 1) = ((𝑁𝑘) + 1))
6261oveq2d 7151 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝐹𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
6359, 62oveq12d 7153 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6463sumeq2sdv 15053 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6558, 64oveq12d 7153 . . . . . . 7 (𝑛 = 𝑁 → ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6657, 65csbiegf 3861 . . . . . 6 (𝑁 ∈ ℕ0𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6766adantr 484 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
68 nn0z 11993 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
69 fz01en 12930 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
7068, 69syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ≈ (1...𝑁))
71 fzfi 13335 . . . . . . . . . 10 (0...(𝑁 − 1)) ∈ Fin
72 fzfi 13335 . . . . . . . . . 10 (1...𝑁) ∈ Fin
73 hashen 13703 . . . . . . . . . 10 (((0...(𝑁 − 1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)))
7471, 72, 73mp2an 691 . . . . . . . . 9 ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))
7570, 74sylibr 237 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)))
76 hashfz1 13702 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
7775, 76eqtrd 2833 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = 𝑁)
7877adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) = 𝑁)
7978csbeq1d 3832 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
80 elfznn0 12995 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
81 simpr 488 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
82 fveq2 6645 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8311, 82sylan9eqr 2855 . . . . . . . . . . 11 ((𝑚 = 𝑘𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑘))
84 fvex 6658 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
8583, 14, 84ovmpoa 7284 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8680, 81, 85syl2anr 599 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8786oveq1d 7150 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
8887oveq2d 7151 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
8988sumeq2dv 15052 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9089oveq2d 7151 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
9167, 79, 903eqtr4d 2843 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9256, 91syl5eq 2845 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9330, 92eqtrd 2833 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9416, 26, 933eqtrd 2837 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ⦋csb 3828   ⊆ wss 3881   class class class wbr 5030   ↦ cmpt 5110   Se wse 5476   We wwe 5477  dom cdm 5519   ↾ cres 5521  Predcpred 6115  Fun wfun 6318   Fn wfn 6319  ‘cfv 6324  (class class class)co 7135  wrecscwrecs 7929   ≈ cen 8489  Fincfn 8492  ℂcc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   − cmin 10859   / cdiv 11286  ℕ0cn0 11885  ℤcz 11969  ℤ≥cuz 12231  ...cfz 12885  ↑cexp 13425  Ccbc 13658  ♯chash 13686  Σcsu 15034   BernPoly cbp 15392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-hash 13687  df-sum 15035  df-bpoly 15393 This theorem is referenced by:  bpolyval  15395
 Copyright terms: Public domain W3C validator