MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   GIF version

Theorem bpolylem 15402
Description: Lemma for bpolyval 15403. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
bpoly.2 𝐹 = wrecs( < , ℕ0, 𝐺)
Assertion
Ref Expression
bpolylem ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝐹   𝑔,𝑁,𝑘,𝑛   𝑔,𝑋,𝑘,𝑛
Allowed substitution hints:   𝐺(𝑔,𝑘,𝑛)

Proof of Theorem bpolylem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7163 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
21oveq1d 7171 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32csbeq2dv 3890 . . . . . . . . 9 (𝑥 = 𝑋(♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
43mpteq2dv 5162 . . . . . . . 8 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))
5 bpoly.1 . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
64, 5syl6eqr 2874 . . . . . . 7 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺)
7 wrecseq3 7952 . . . . . . 7 ((𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
86, 7syl 17 . . . . . 6 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
9 bpoly.2 . . . . . 6 𝐹 = wrecs( < , ℕ0, 𝐺)
108, 9syl6eqr 2874 . . . . 5 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = 𝐹)
1110fveq1d 6672 . . . 4 (𝑥 = 𝑋 → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑚))
12 fveq2 6670 . . . 4 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
1311, 12sylan9eqr 2878 . . 3 ((𝑚 = 𝑁𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑁))
14 df-bpoly 15401 . . 3 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
15 fvex 6683 . . 3 (𝐹𝑁) ∈ V
1613, 14, 15ovmpoa 7305 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = (𝐹𝑁))
17 ltweuz 13330 . . . . 5 < We (ℤ‘0)
18 nn0uz 12281 . . . . . 6 0 = (ℤ‘0)
19 weeq2 5544 . . . . . 6 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
2018, 19ax-mp 5 . . . . 5 ( < We ℕ0 ↔ < We (ℤ‘0))
2117, 20mpbir 233 . . . 4 < We ℕ0
22 nn0ex 11904 . . . . 5 0 ∈ V
23 exse 5519 . . . . 5 (ℕ0 ∈ V → < Se ℕ0)
2422, 23ax-mp 5 . . . 4 < Se ℕ0
2521, 24, 9wfr2 7974 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2625adantr 483 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
27 prednn0 13032 . . . . . 6 (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2827adantr 483 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2928reseq2d 5853 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹 ↾ Pred( < , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1))))
3029fveq2d 6674 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))))
3121, 24, 9wfrfun 7965 . . . . . 6 Fun 𝐹
32 ovex 7189 . . . . . 6 (0...(𝑁 − 1)) ∈ V
33 resfunexg 6978 . . . . . 6 ((Fun 𝐹 ∧ (0...(𝑁 − 1)) ∈ V) → (𝐹 ↾ (0...(𝑁 − 1))) ∈ V)
3431, 32, 33mp2an 690 . . . . 5 (𝐹 ↾ (0...(𝑁 − 1))) ∈ V
35 dmeq 5772 . . . . . . . . . . 11 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1))))
3621, 24, 9wfr1 7973 . . . . . . . . . . . . 13 𝐹 Fn ℕ0
37 fz0ssnn0 13003 . . . . . . . . . . . . 13 (0...(𝑁 − 1)) ⊆ ℕ0
38 fnssres 6470 . . . . . . . . . . . . 13 ((𝐹 Fn ℕ0 ∧ (0...(𝑁 − 1)) ⊆ ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)))
3936, 37, 38mp2an 690 . . . . . . . . . . . 12 (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))
40 fndm 6455 . . . . . . . . . . . 12 ((𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)) → dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1)))
4139, 40ax-mp 5 . . . . . . . . . . 11 dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1))
4235, 41syl6eq 2872 . . . . . . . . . 10 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1)))
43 fveq1 6669 . . . . . . . . . . . . 13 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘))
44 fvres 6689 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹𝑘))
4543, 44sylan9eq 2876 . . . . . . . . . . . 12 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔𝑘) = (𝐹𝑘))
4645oveq1d 7171 . . . . . . . . . . 11 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑛𝑘) + 1)))
4746oveq2d 7172 . . . . . . . . . 10 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4842, 47sumeq12rdv 15064 . . . . . . . . 9 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
4948oveq2d 7172 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5049csbeq2dv 3890 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5142fveq2d 6674 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) = (♯‘(0...(𝑁 − 1))))
5251csbeq1d 3887 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5350, 52eqtrd 2856 . . . . . 6 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
54 ovex 7189 . . . . . . 7 ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5554csbex 5215 . . . . . 6 (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5653, 5, 55fvmpt 6768 . . . . 5 ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5734, 56ax-mp 5 . . . 4 (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
58 nfcvd 2978 . . . . . . 7 (𝑁 ∈ ℕ0𝑛((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
59 oveq2 7164 . . . . . . . 8 (𝑛 = 𝑁 → (𝑋𝑛) = (𝑋𝑁))
60 oveq1 7163 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
61 oveq1 7163 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
6261oveq1d 7171 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝑛𝑘) + 1) = ((𝑁𝑘) + 1))
6362oveq2d 7172 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝐹𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
6460, 63oveq12d 7174 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6564sumeq2sdv 15061 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6659, 65oveq12d 7174 . . . . . . 7 (𝑛 = 𝑁 → ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6758, 66csbiegf 3916 . . . . . 6 (𝑁 ∈ ℕ0𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6867adantr 483 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
69 nn0z 12006 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
70 fz01en 12936 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
7169, 70syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ≈ (1...𝑁))
72 fzfi 13341 . . . . . . . . . 10 (0...(𝑁 − 1)) ∈ Fin
73 fzfi 13341 . . . . . . . . . 10 (1...𝑁) ∈ Fin
74 hashen 13708 . . . . . . . . . 10 (((0...(𝑁 − 1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)))
7572, 73, 74mp2an 690 . . . . . . . . 9 ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))
7671, 75sylibr 236 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)))
77 hashfz1 13707 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
7876, 77eqtrd 2856 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = 𝑁)
7978adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) = 𝑁)
8079csbeq1d 3887 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
81 elfznn0 13001 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
82 simpr 487 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
83 fveq2 6670 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8411, 83sylan9eqr 2878 . . . . . . . . . . 11 ((𝑚 = 𝑘𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑘))
85 fvex 6683 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
8684, 14, 85ovmpoa 7305 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8781, 82, 86syl2anr 598 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8887oveq1d 7171 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
8988oveq2d 7172 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9089sumeq2dv 15060 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9190oveq2d 7172 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
9268, 80, 913eqtr4d 2866 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9357, 92syl5eq 2868 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9430, 93eqtrd 2856 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9516, 26, 943eqtrd 2860 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  csb 3883  wss 3936   class class class wbr 5066  cmpt 5146   Se wse 5512   We wwe 5513  dom cdm 5555  cres 5557  Predcpred 6147  Fun wfun 6349   Fn wfn 6350  cfv 6355  (class class class)co 7156  wrecscwrecs 7946  cen 8506  Fincfn 8509  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870   / cdiv 11297  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cexp 13430  Ccbc 13663  chash 13691  Σcsu 15042   BernPoly cbp 15400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-hash 13692  df-sum 15043  df-bpoly 15401
This theorem is referenced by:  bpolyval  15403
  Copyright terms: Public domain W3C validator