Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥↑𝑛) = (𝑋↑𝑛)) |
2 | 1 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
3 | 2 | csbeq2dv 3835 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ⦋(♯‘dom
𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ⦋(♯‘dom
𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
4 | 3 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) = (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))))) |
5 | | bpoly.1 |
. . . . . . . 8
⊢ 𝐺 = (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) = 𝐺) |
7 | | wrecseq3 8107 |
. . . . . . 7
⊢ ((𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))))) = wrecs( < ,
ℕ0, 𝐺)) |
8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝑥 = 𝑋 → wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))))) = wrecs( < ,
ℕ0, 𝐺)) |
9 | | bpoly.2 |
. . . . . 6
⊢ 𝐹 = wrecs( < ,
ℕ0, 𝐺) |
10 | 8, 9 | eqtr4di 2797 |
. . . . 5
⊢ (𝑥 = 𝑋 → wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))))) = 𝐹) |
11 | 10 | fveq1d 6758 |
. . . 4
⊢ (𝑥 = 𝑋 → (wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚) = (𝐹‘𝑚)) |
12 | | fveq2 6756 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝐹‘𝑚) = (𝐹‘𝑁)) |
13 | 11, 12 | sylan9eqr 2801 |
. . 3
⊢ ((𝑚 = 𝑁 ∧ 𝑥 = 𝑋) → (wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚) = (𝐹‘𝑁)) |
14 | | df-bpoly 15685 |
. . 3
⊢ BernPoly
= (𝑚 ∈
ℕ0, 𝑥
∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) |
15 | | fvex 6769 |
. . 3
⊢ (𝐹‘𝑁) ∈ V |
16 | 13, 14, 15 | ovmpoa 7406 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑁 BernPoly 𝑋) = (𝐹‘𝑁)) |
17 | | ltweuz 13609 |
. . . . 5
⊢ < We
(ℤ≥‘0) |
18 | | nn0uz 12549 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
19 | | weeq2 5569 |
. . . . . 6
⊢
(ℕ0 = (ℤ≥‘0) → ( < We
ℕ0 ↔ < We
(ℤ≥‘0))) |
20 | 18, 19 | ax-mp 5 |
. . . . 5
⊢ ( < We
ℕ0 ↔ < We
(ℤ≥‘0)) |
21 | 17, 20 | mpbir 230 |
. . . 4
⊢ < We
ℕ0 |
22 | | nn0ex 12169 |
. . . . 5
⊢
ℕ0 ∈ V |
23 | | exse 5543 |
. . . . 5
⊢
(ℕ0 ∈ V → < Se
ℕ0) |
24 | 22, 23 | ax-mp 5 |
. . . 4
⊢ < Se
ℕ0 |
25 | 9 | wfr2 8138 |
. . . 4
⊢ ((( <
We ℕ0 ∧ < Se ℕ0) ∧ 𝑁 ∈ ℕ0)
→ (𝐹‘𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0,
𝑁)))) |
26 | 21, 24, 25 | mpanl12 698 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝐹‘𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0,
𝑁)))) |
27 | 26 | adantr 480 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝐹‘𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0,
𝑁)))) |
28 | | prednn0 13309 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1))) |
29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1))) |
30 | 29 | reseq2d 5880 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝐹 ↾ Pred(
< , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1)))) |
31 | 30 | fveq2d 6760 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝐺‘(𝐹 ↾ Pred( < ,
ℕ0, 𝑁))) =
(𝐺‘(𝐹 ↾ (0...(𝑁 − 1))))) |
32 | 9 | wfrfun 8134 |
. . . . . . 7
⊢ (( <
We ℕ0 ∧ < Se ℕ0) → Fun 𝐹) |
33 | 21, 24, 32 | mp2an 688 |
. . . . . 6
⊢ Fun 𝐹 |
34 | | ovex 7288 |
. . . . . 6
⊢
(0...(𝑁 − 1))
∈ V |
35 | | resfunexg 7073 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ (0...(𝑁 − 1)) ∈ V) →
(𝐹 ↾ (0...(𝑁 − 1))) ∈
V) |
36 | 33, 34, 35 | mp2an 688 |
. . . . 5
⊢ (𝐹 ↾ (0...(𝑁 − 1))) ∈ V |
37 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1)))) |
38 | 9 | wfr1 8137 |
. . . . . . . . . . . 12
⊢ (( <
We ℕ0 ∧ < Se ℕ0) → 𝐹 Fn
ℕ0) |
39 | 21, 24, 38 | mp2an 688 |
. . . . . . . . . . 11
⊢ 𝐹 Fn
ℕ0 |
40 | | fz0ssnn0 13280 |
. . . . . . . . . . 11
⊢
(0...(𝑁 − 1))
⊆ ℕ0 |
41 | | fnssres 6539 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn ℕ0 ∧
(0...(𝑁 − 1)) ⊆
ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))) |
42 | 39, 40, 41 | mp2an 688 |
. . . . . . . . . 10
⊢ (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)) |
43 | 42 | fndmi 6521 |
. . . . . . . . 9
⊢ dom
(𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1)) |
44 | 37, 43 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1))) |
45 | 44 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom
𝑔) =
(♯‘(0...(𝑁
− 1)))) |
46 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔‘𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘)) |
47 | | fvres 6775 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹‘𝑘)) |
48 | 46, 47 | sylan9eq 2799 |
. . . . . . . . . . 11
⊢ ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔‘𝑘) = (𝐹‘𝑘)) |
49 | 48 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)) = ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))) |
50 | 49 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) |
51 | 44, 50 | sumeq12rdv 15347 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) |
52 | 51 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
53 | 45, 52 | csbeq12dv 3837 |
. . . . . 6
⊢ (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) →
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1)))) =
⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
54 | | ovex 7288 |
. . . . . . 7
⊢ ((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) ∈ V |
55 | 54 | csbex 5230 |
. . . . . 6
⊢
⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) ∈ V |
56 | 53, 5, 55 | fvmpt 6857 |
. . . . 5
⊢ ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) =
⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
57 | 36, 56 | ax-mp 5 |
. . . 4
⊢ (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) =
⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) |
58 | | nfcvd 2907 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ Ⅎ𝑛((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))))) |
59 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑋↑𝑛) = (𝑋↑𝑁)) |
60 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘)) |
61 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝑛 − 𝑘) = (𝑁 − 𝑘)) |
62 | 61 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → ((𝑛 − 𝑘) + 1) = ((𝑁 − 𝑘) + 1)) |
63 | 62 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)) = ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))) |
64 | 60, 63 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1)))) |
65 | 64 | sumeq2sdv 15344 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1)))) |
66 | 59, 65 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))))) |
67 | 58, 66 | csbiegf 3862 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ⦋𝑁 /
𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))))) |
68 | 67 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ ⦋𝑁 /
𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))))) |
69 | | nn0z 12273 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
70 | | fz01en 13213 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(0...(𝑁 − 1)) ≈
(1...𝑁)) |
71 | 69, 70 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (0...(𝑁 − 1))
≈ (1...𝑁)) |
72 | | fzfi 13620 |
. . . . . . . . . 10
⊢
(0...(𝑁 − 1))
∈ Fin |
73 | | fzfi 13620 |
. . . . . . . . . 10
⊢
(1...𝑁) ∈
Fin |
74 | | hashen 13989 |
. . . . . . . . . 10
⊢
(((0...(𝑁 −
1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) →
((♯‘(0...(𝑁
− 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))) |
75 | 72, 73, 74 | mp2an 688 |
. . . . . . . . 9
⊢
((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)) |
76 | 71, 75 | sylibr 233 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁))) |
77 | | hashfz1 13988 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
78 | 76, 77 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0...(𝑁 − 1))) = 𝑁) |
79 | 78 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (♯‘(0...(𝑁 − 1))) = 𝑁) |
80 | 79 | csbeq1d 3832 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ ⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ⦋𝑁 / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1))))) |
81 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
82 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ 𝑋 ∈
ℂ) |
83 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
84 | 11, 83 | sylan9eqr 2801 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑘 ∧ 𝑥 = 𝑋) → (wrecs( < , ℕ0,
(𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚) = (𝐹‘𝑘)) |
85 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑘) ∈ V |
86 | 84, 14, 85 | ovmpoa 7406 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑘 BernPoly 𝑋) = (𝐹‘𝑘)) |
87 | 81, 82, 86 | syl2anr 596 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹‘𝑘)) |
88 | 87 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)) = ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))) |
89 | 88 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1)))) |
90 | 89 | sumeq2dv 15343 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ Σ𝑘 ∈
(0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1)))) |
91 | 90 | oveq2d 7271 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹‘𝑘) / ((𝑁 − 𝑘) + 1))))) |
92 | 68, 80, 91 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ ⦋(♯‘(0...(𝑁 − 1))) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹‘𝑘) / ((𝑛 − 𝑘) + 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
93 | 57, 92 | eqtrid 2790 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
94 | 31, 93 | eqtrd 2778 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝐺‘(𝐹 ↾ Pred( < ,
ℕ0, 𝑁))) =
((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
95 | 16, 27, 94 | 3eqtrd 2782 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |