MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolylem Structured version   Visualization version   GIF version

Theorem bpolylem 16064
Description: Lemma for bpolyval 16065. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
bpoly.1 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
bpoly.2 𝐹 = wrecs( < , ℕ0, 𝐺)
Assertion
Ref Expression
bpolylem ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Distinct variable groups:   𝑔,𝑘,𝑛,𝐹   𝑔,𝑁,𝑘,𝑛   𝑔,𝑋,𝑘,𝑛
Allowed substitution hints:   𝐺(𝑔,𝑘,𝑛)

Proof of Theorem bpolylem
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
21oveq1d 7420 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
32csbeq2dv 3881 . . . . . . . . 9 (𝑥 = 𝑋(♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
43mpteq2dv 5215 . . . . . . . 8 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))
5 bpoly.1 . . . . . . . 8 𝐺 = (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))
64, 5eqtr4di 2788 . . . . . . 7 (𝑥 = 𝑋 → (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺)
7 wrecseq3 8319 . . . . . . 7 ((𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))) = 𝐺 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
86, 7syl 17 . . . . . 6 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = wrecs( < , ℕ0, 𝐺))
9 bpoly.2 . . . . . 6 𝐹 = wrecs( < , ℕ0, 𝐺)
108, 9eqtr4di 2788 . . . . 5 (𝑥 = 𝑋 → wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))))) = 𝐹)
1110fveq1d 6878 . . . 4 (𝑥 = 𝑋 → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑚))
12 fveq2 6876 . . . 4 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
1311, 12sylan9eqr 2792 . . 3 ((𝑚 = 𝑁𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑁))
14 df-bpoly 16063 . . 3 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
15 fvex 6889 . . 3 (𝐹𝑁) ∈ V
1613, 14, 15ovmpoa 7562 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = (𝐹𝑁))
17 ltweuz 13979 . . . . 5 < We (ℤ‘0)
18 nn0uz 12894 . . . . . 6 0 = (ℤ‘0)
19 weeq2 5642 . . . . . 6 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
2018, 19ax-mp 5 . . . . 5 ( < We ℕ0 ↔ < We (ℤ‘0))
2117, 20mpbir 231 . . . 4 < We ℕ0
22 nn0ex 12507 . . . . 5 0 ∈ V
23 exse 5614 . . . . 5 (ℕ0 ∈ V → < Se ℕ0)
2422, 23ax-mp 5 . . . 4 < Se ℕ0
259wfr2 8350 . . . 4 ((( < We ℕ0 ∧ < Se ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2621, 24, 25mpanl12 702 . . 3 (𝑁 ∈ ℕ0 → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
2726adantr 480 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹𝑁) = (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))))
28 prednn0 13669 . . . . . 6 (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
2928adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1)))
3029reseq2d 5966 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐹 ↾ Pred( < , ℕ0, 𝑁)) = (𝐹 ↾ (0...(𝑁 − 1))))
3130fveq2d 6880 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))))
329wfrfun 8346 . . . . . . 7 (( < We ℕ0 ∧ < Se ℕ0) → Fun 𝐹)
3321, 24, 32mp2an 692 . . . . . 6 Fun 𝐹
34 ovex 7438 . . . . . 6 (0...(𝑁 − 1)) ∈ V
35 resfunexg 7207 . . . . . 6 ((Fun 𝐹 ∧ (0...(𝑁 − 1)) ∈ V) → (𝐹 ↾ (0...(𝑁 − 1))) ∈ V)
3633, 34, 35mp2an 692 . . . . 5 (𝐹 ↾ (0...(𝑁 − 1))) ∈ V
37 dmeq 5883 . . . . . . . . 9 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = dom (𝐹 ↾ (0...(𝑁 − 1))))
389wfr1 8349 . . . . . . . . . . . 12 (( < We ℕ0 ∧ < Se ℕ0) → 𝐹 Fn ℕ0)
3921, 24, 38mp2an 692 . . . . . . . . . . 11 𝐹 Fn ℕ0
40 fz0ssnn0 13639 . . . . . . . . . . 11 (0...(𝑁 − 1)) ⊆ ℕ0
41 fnssres 6661 . . . . . . . . . . 11 ((𝐹 Fn ℕ0 ∧ (0...(𝑁 − 1)) ⊆ ℕ0) → (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1)))
4239, 40, 41mp2an 692 . . . . . . . . . 10 (𝐹 ↾ (0...(𝑁 − 1))) Fn (0...(𝑁 − 1))
4342fndmi 6642 . . . . . . . . 9 dom (𝐹 ↾ (0...(𝑁 − 1))) = (0...(𝑁 − 1))
4437, 43eqtrdi 2786 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → dom 𝑔 = (0...(𝑁 − 1)))
4544fveq2d 6880 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) = (♯‘(0...(𝑁 − 1))))
46 fveq1 6875 . . . . . . . . . . . 12 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (𝑔𝑘) = ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘))
47 fvres 6895 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝑁 − 1)) → ((𝐹 ↾ (0...(𝑁 − 1)))‘𝑘) = (𝐹𝑘))
4846, 47sylan9eq 2790 . . . . . . . . . . 11 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑔𝑘) = (𝐹𝑘))
4948oveq1d 7420 . . . . . . . . . 10 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑔𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑛𝑘) + 1)))
5049oveq2d 7421 . . . . . . . . 9 ((𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
5144, 50sumeq12rdv 15723 . . . . . . . 8 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
5251oveq2d 7421 . . . . . . 7 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → ((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5345, 52csbeq12dv 3883 . . . . . 6 (𝑔 = (𝐹 ↾ (0...(𝑁 − 1))) → (♯‘dom 𝑔) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
54 ovex 7438 . . . . . . 7 ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5554csbex 5281 . . . . . 6 (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) ∈ V
5653, 5, 55fvmpt 6986 . . . . 5 ((𝐹 ↾ (0...(𝑁 − 1))) ∈ V → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
5736, 56ax-mp 5 . . . 4 (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))))
58 nfcvd 2899 . . . . . . 7 (𝑁 ∈ ℕ0𝑛((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
59 oveq2 7413 . . . . . . . 8 (𝑛 = 𝑁 → (𝑋𝑛) = (𝑋𝑁))
60 oveq1 7412 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
61 oveq1 7412 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
6261oveq1d 7420 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((𝑛𝑘) + 1) = ((𝑁𝑘) + 1))
6362oveq2d 7421 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝐹𝑘) / ((𝑛𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
6460, 63oveq12d 7423 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6564sumeq2sdv 15719 . . . . . . . 8 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
6659, 65oveq12d 7423 . . . . . . 7 (𝑛 = 𝑁 → ((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6758, 66csbiegf 3907 . . . . . 6 (𝑁 ∈ ℕ0𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
6867adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
69 nn0z 12613 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
70 fz01en 13569 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
7169, 70syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (0...(𝑁 − 1)) ≈ (1...𝑁))
72 fzfi 13990 . . . . . . . . . 10 (0...(𝑁 − 1)) ∈ Fin
73 fzfi 13990 . . . . . . . . . 10 (1...𝑁) ∈ Fin
74 hashen 14365 . . . . . . . . . 10 (((0...(𝑁 − 1)) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁)))
7572, 73, 74mp2an 692 . . . . . . . . 9 ((♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)) ↔ (0...(𝑁 − 1)) ≈ (1...𝑁))
7671, 75sylibr 234 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = (♯‘(1...𝑁)))
77 hashfz1 14364 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
7876, 77eqtrd 2770 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(0...(𝑁 − 1))) = 𝑁)
7978adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) = 𝑁)
8079csbeq1d 3878 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = 𝑁 / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))))
81 elfznn0 13637 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
82 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
83 fveq2 6876 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8411, 83sylan9eqr 2792 . . . . . . . . . . 11 ((𝑚 = 𝑘𝑥 = 𝑋) → (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚) = (𝐹𝑘))
85 fvex 6889 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
8684, 14, 85ovmpoa 7562 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8781, 82, 86syl2anr 597 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) = (𝐹𝑘))
8887oveq1d 7420 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝐹𝑘) / ((𝑁𝑘) + 1)))
8988oveq2d 7421 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9089sumeq2dv 15718 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1))))
9190oveq2d 7421 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝐹𝑘) / ((𝑁𝑘) + 1)))))
9268, 80, 913eqtr4d 2780 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (♯‘(0...(𝑁 − 1))) / 𝑛((𝑋𝑛) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑛C𝑘) · ((𝐹𝑘) / ((𝑛𝑘) + 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9357, 92eqtrid 2782 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ (0...(𝑁 − 1)))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9431, 93eqtrd 2770 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝐺‘(𝐹 ↾ Pred( < , ℕ0, 𝑁))) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
9516, 27, 943eqtrd 2774 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  wss 3926   class class class wbr 5119  cmpt 5201   Se wse 5604   We wwe 5605  dom cdm 5654  cres 5656  Predcpred 6289  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405  wrecscwrecs 8310  cen 8956  Fincfn 8959  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cmin 11466   / cdiv 11894  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  Ccbc 14320  chash 14348  Σcsu 15702   BernPoly cbp 16062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-hash 14349  df-sum 15703  df-bpoly 16063
This theorem is referenced by:  bpolyval  16065
  Copyright terms: Public domain W3C validator