Step | Hyp | Ref
| Expression |
1 | | coeq2 5872 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑑 ∘ 𝑓) = (𝑑 ∘ 𝐹)) |
2 | 1 | fveq2d 6911 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))) |
3 | 2 | fveq1d 6909 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
4 | 3 | csbeq2dv 3915 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
5 | 4 | csbeq2dv 3915 |
. . . . 5
⊢ (𝑓 = 𝐹 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
6 | 5 | csbeq2dv 3915 |
. . . 4
⊢ (𝑓 = 𝐹 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
7 | 6 | csbeq2dv 3915 |
. . 3
⊢ (𝑓 = 𝐹 → ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
8 | | selvval.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
9 | | reldmmpl 22026 |
. . . . . . 7
⊢ Rel dom
mPoly |
10 | | selvval.p |
. . . . . . 7
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
11 | | selvval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
12 | 9, 10, 11 | elbasov 17252 |
. . . . . 6
⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
13 | 8, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
14 | 13 | simpld 494 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
15 | 13 | simprd 495 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ V) |
16 | | selvval.j |
. . . 4
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
17 | 14, 15, 16 | selvfval 22156 |
. . 3
⊢ (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
18 | 10 | fveq2i 6910 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(𝐼 mPoly 𝑅)) |
19 | 11, 18 | eqtri 2763 |
. . . 4
⊢ 𝐵 = (Base‘(𝐼 mPoly 𝑅)) |
20 | 8, 19 | eleqtrdi 2849 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑅))) |
21 | | fvex 6920 |
. . . . . . . 8
⊢ ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
22 | 21 | csbex 5317 |
. . . . . . 7
⊢
⦋(𝑐
∘ (algSc‘𝑢)) /
𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
23 | 22 | csbex 5317 |
. . . . . 6
⊢
⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
24 | 23 | csbex 5317 |
. . . . 5
⊢
⦋(𝐽
mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
25 | 24 | csbex 5317 |
. . . 4
⊢
⦋((𝐼
∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
26 | 25 | a1i 11 |
. . 3
⊢ (𝜑 → ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V) |
27 | 7, 17, 20, 26 | fvmptd4 7040 |
. 2
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
28 | | ovex 7464 |
. . 3
⊢ ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ V |
29 | | selvval.u |
. . . . 5
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
30 | 29 | eqeq2i 2748 |
. . . 4
⊢ (𝑢 = 𝑈 ↔ 𝑢 = ((𝐼 ∖ 𝐽) mPoly 𝑅)) |
31 | | oveq2 7439 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈)) |
32 | | fveq2 6907 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈)) |
33 | 32 | coeq2d 5876 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈))) |
34 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈)) |
35 | 34 | fveq1d 6909 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥)) |
36 | 35 | ifeq1d 4550 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) = if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
37 | 36 | mpteq2dv 5250 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
38 | 37 | fveq2d 6911 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
39 | 33, 38 | csbeq12dv 3917 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
40 | 39 | csbeq2dv 3915 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
41 | 31, 40 | csbeq12dv 3917 |
. . . . 5
⊢ (𝑢 = 𝑈 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐽 mPoly 𝑈) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
42 | | ovex 7464 |
. . . . . 6
⊢ (𝐽 mPoly 𝑈) ∈ V |
43 | | selvval.t |
. . . . . . . 8
⊢ 𝑇 = (𝐽 mPoly 𝑈) |
44 | 43 | eqeq2i 2748 |
. . . . . . 7
⊢ (𝑡 = 𝑇 ↔ 𝑡 = (𝐽 mPoly 𝑈)) |
45 | | fveq2 6907 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇)) |
46 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇)) |
47 | 46 | fveq1d 6909 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑)) |
48 | 47 | fveq1d 6909 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))) |
49 | 48 | fveq1d 6909 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
50 | 49 | csbeq2dv 3915 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
51 | 45, 50 | csbeq12dv 3917 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑇) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
52 | | fvex 6920 |
. . . . . . . . 9
⊢
(algSc‘𝑇)
∈ V |
53 | | selvval.c |
. . . . . . . . . . 11
⊢ 𝐶 = (algSc‘𝑇) |
54 | 53 | eqeq2i 2748 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 ↔ 𝑐 = (algSc‘𝑇)) |
55 | | coeq1 5871 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈))) |
56 | | fveq1 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝐶 → (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) |
57 | 56 | ifeq2d 4551 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝐶 → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) = if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
58 | 57 | mpteq2dv 5250 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝐶 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
59 | 58 | fveq2d 6911 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
60 | 55, 59 | csbeq12dv 3917 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐶 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
61 | 53 | fvexi 6921 |
. . . . . . . . . . . . 13
⊢ 𝐶 ∈ V |
62 | | fvex 6920 |
. . . . . . . . . . . . 13
⊢
(algSc‘𝑈)
∈ V |
63 | 61, 62 | coex 7953 |
. . . . . . . . . . . 12
⊢ (𝐶 ∘ (algSc‘𝑈)) ∈ V |
64 | | selvval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) |
65 | 64 | eqeq2i 2748 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝐷 ↔ 𝑑 = (𝐶 ∘ (algSc‘𝑈))) |
66 | | rneq 5950 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷) |
67 | 66 | fveq2d 6911 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷)) |
68 | | coeq1 5871 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝐷 → (𝑑 ∘ 𝐹) = (𝐷 ∘ 𝐹)) |
69 | 67, 68 | fveq12d 6914 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))) |
70 | 69 | fveq1d 6909 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
71 | 65, 70 | sylbir 235 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
72 | 63, 71 | csbie 3944 |
. . . . . . . . . . 11
⊢
⦋(𝐶
∘ (algSc‘𝑈)) /
𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
73 | 60, 72 | eqtrdi 2791 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
74 | 54, 73 | sylbir 235 |
. . . . . . . . 9
⊢ (𝑐 = (algSc‘𝑇) → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
75 | 52, 74 | csbie 3944 |
. . . . . . . 8
⊢
⦋(algSc‘𝑇) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
76 | 51, 75 | eqtrdi 2791 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
77 | 44, 76 | sylbir 235 |
. . . . . 6
⊢ (𝑡 = (𝐽 mPoly 𝑈) → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
78 | 42, 77 | csbie 3944 |
. . . . 5
⊢
⦋(𝐽
mPoly 𝑈) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
79 | 41, 78 | eqtrdi 2791 |
. . . 4
⊢ (𝑢 = 𝑈 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
80 | 30, 79 | sylbir 235 |
. . 3
⊢ (𝑢 = ((𝐼 ∖ 𝐽) mPoly 𝑅) → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
81 | 28, 80 | csbie 3944 |
. 2
⊢
⦋((𝐼
∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
82 | 27, 81 | eqtrdi 2791 |
1
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |