MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvval Structured version   Visualization version   GIF version

Theorem selvval 22022
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvval.b 𝐵 = (Base‘𝑃)
selvval.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval.t 𝑇 = (𝐽 mPoly 𝑈)
selvval.c 𝐶 = (algSc‘𝑇)
selvval.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval.j (𝜑𝐽𝐼)
selvval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem selvval
Dummy variables 𝑓 𝑢 𝑡 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5822 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑑𝑓) = (𝑑𝐹))
21fveq2d 6862 . . . . . . . 8 (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)))
32fveq1d 6860 . . . . . . 7 (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
43csbeq2dv 3869 . . . . . 6 (𝑓 = 𝐹(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
54csbeq2dv 3869 . . . . 5 (𝑓 = 𝐹(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
65csbeq2dv 3869 . . . 4 (𝑓 = 𝐹(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
76csbeq2dv 3869 . . 3 (𝑓 = 𝐹((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8 selvval.f . . . . . 6 (𝜑𝐹𝐵)
9 reldmmpl 21897 . . . . . . 7 Rel dom mPoly
10 selvval.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
11 selvval.b . . . . . . 7 𝐵 = (Base‘𝑃)
129, 10, 11elbasov 17186 . . . . . 6 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
138, 12syl 17 . . . . 5 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1413simpld 494 . . . 4 (𝜑𝐼 ∈ V)
1513simprd 495 . . . 4 (𝜑𝑅 ∈ V)
16 selvval.j . . . 4 (𝜑𝐽𝐼)
1714, 15, 16selvfval 22021 . . 3 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
1810fveq2i 6861 . . . . 5 (Base‘𝑃) = (Base‘(𝐼 mPoly 𝑅))
1911, 18eqtri 2752 . . . 4 𝐵 = (Base‘(𝐼 mPoly 𝑅))
208, 19eleqtrdi 2838 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑅)))
21 fvex 6871 . . . . . . . 8 ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2221csbex 5266 . . . . . . 7 (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2322csbex 5266 . . . . . 6 (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2423csbex 5266 . . . . 5 (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2524csbex 5266 . . . 4 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2625a1i 11 . . 3 (𝜑((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V)
277, 17, 20, 26fvmptd4 6992 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
28 ovex 7420 . . 3 ((𝐼𝐽) mPoly 𝑅) ∈ V
29 selvval.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
3029eqeq2i 2742 . . . 4 (𝑢 = 𝑈𝑢 = ((𝐼𝐽) mPoly 𝑅))
31 oveq2 7395 . . . . . 6 (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈))
32 fveq2 6858 . . . . . . . . 9 (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈))
3332coeq2d 5826 . . . . . . . 8 (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈)))
34 oveq2 7395 . . . . . . . . . . . 12 (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈))
3534fveq1d 6860 . . . . . . . . . . 11 (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥))
3635ifeq1d 4508 . . . . . . . . . 10 (𝑢 = 𝑈 → if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3736mpteq2dv 5201 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
3837fveq2d 6862 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3933, 38csbeq12dv 3871 . . . . . . 7 (𝑢 = 𝑈(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4039csbeq2dv 3869 . . . . . 6 (𝑢 = 𝑈(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4131, 40csbeq12dv 3871 . . . . 5 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
42 ovex 7420 . . . . . 6 (𝐽 mPoly 𝑈) ∈ V
43 selvval.t . . . . . . . 8 𝑇 = (𝐽 mPoly 𝑈)
4443eqeq2i 2742 . . . . . . 7 (𝑡 = 𝑇𝑡 = (𝐽 mPoly 𝑈))
45 fveq2 6858 . . . . . . . . 9 (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇))
46 oveq2 7395 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇))
4746fveq1d 6860 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑))
4847fveq1d 6860 . . . . . . . . . . 11 (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)))
4948fveq1d 6860 . . . . . . . . . 10 (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5049csbeq2dv 3869 . . . . . . . . 9 (𝑡 = 𝑇(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5145, 50csbeq12dv 3871 . . . . . . . 8 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
52 fvex 6871 . . . . . . . . 9 (algSc‘𝑇) ∈ V
53 selvval.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑇)
5453eqeq2i 2742 . . . . . . . . . 10 (𝑐 = 𝐶𝑐 = (algSc‘𝑇))
55 coeq1 5821 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈)))
56 fveq1 6857 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
5756ifeq2d 4509 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
5857mpteq2dv 5201 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
5958fveq2d 6862 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6055, 59csbeq12dv 3871 . . . . . . . . . . 11 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6153fvexi 6872 . . . . . . . . . . . . 13 𝐶 ∈ V
62 fvex 6871 . . . . . . . . . . . . 13 (algSc‘𝑈) ∈ V
6361, 62coex 7906 . . . . . . . . . . . 12 (𝐶 ∘ (algSc‘𝑈)) ∈ V
64 selvval.d . . . . . . . . . . . . . 14 𝐷 = (𝐶 ∘ (algSc‘𝑈))
6564eqeq2i 2742 . . . . . . . . . . . . 13 (𝑑 = 𝐷𝑑 = (𝐶 ∘ (algSc‘𝑈)))
66 rneq 5900 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷)
6766fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷))
68 coeq1 5821 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑𝐹) = (𝐷𝐹))
6967, 68fveq12d 6865 . . . . . . . . . . . . . 14 (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)))
7069fveq1d 6860 . . . . . . . . . . . . 13 (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7165, 70sylbir 235 . . . . . . . . . . . 12 (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7263, 71csbie 3897 . . . . . . . . . . 11 (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7360, 72eqtrdi 2780 . . . . . . . . . 10 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7454, 73sylbir 235 . . . . . . . . 9 (𝑐 = (algSc‘𝑇) → (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7552, 74csbie 3897 . . . . . . . 8 (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7651, 75eqtrdi 2780 . . . . . . 7 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7744, 76sylbir 235 . . . . . 6 (𝑡 = (𝐽 mPoly 𝑈) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7842, 77csbie 3897 . . . . 5 (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7941, 78eqtrdi 2780 . . . 4 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8030, 79sylbir 235 . . 3 (𝑢 = ((𝐼𝐽) mPoly 𝑅) → (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8128, 80csbie 3897 . 2 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
8227, 81eqtrdi 2780 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  cdif 3911  wss 3914  ifcif 4488  cmpt 5188  ran crn 5639  ccom 5642  cfv 6511  (class class class)co 7387  Basecbs 17179  algSccascl 21761   mVar cmvr 21814   mPoly cmpl 21815   evalSub ces 21979   selectVars cslv 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-mpl 21820  df-selv 22019
This theorem is referenced by:  selvcl  42571  selvval2  42572
  Copyright terms: Public domain W3C validator