Step | Hyp | Ref
| Expression |
1 | | selvval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
2 | | selvval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
3 | | selvval.j |
. . . 4
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
4 | 1, 2, 3 | selvfval 21327 |
. . 3
⊢ (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
5 | | coeq2 5767 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑑 ∘ 𝑓) = (𝑑 ∘ 𝐹)) |
6 | 5 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))) |
7 | 6 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
8 | 7 | csbeq2dv 3839 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
9 | 8 | csbeq2dv 3839 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
10 | 9 | csbeq2dv 3839 |
. . . . 5
⊢ (𝑓 = 𝐹 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
11 | 10 | csbeq2dv 3839 |
. . . 4
⊢ (𝑓 = 𝐹 → ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
12 | 11 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑓 = 𝐹) → ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
13 | | selvval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
14 | | selvval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
15 | | selvval.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
16 | 15 | fveq2i 6777 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(𝐼 mPoly 𝑅)) |
17 | 14, 16 | eqtri 2766 |
. . . 4
⊢ 𝐵 = (Base‘(𝐼 mPoly 𝑅)) |
18 | 13, 17 | eleqtrdi 2849 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑅))) |
19 | | fvex 6787 |
. . . . . . . 8
⊢ ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
20 | 19 | csbex 5235 |
. . . . . . 7
⊢
⦋(𝑐
∘ (algSc‘𝑢)) /
𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
21 | 20 | csbex 5235 |
. . . . . 6
⊢
⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
22 | 21 | csbex 5235 |
. . . . 5
⊢
⦋(𝐽
mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
23 | 22 | csbex 5235 |
. . . 4
⊢
⦋((𝐼
∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V |
24 | 23 | a1i 11 |
. . 3
⊢ (𝜑 → ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ V) |
25 | 4, 12, 18, 24 | fvmptd 6882 |
. 2
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
26 | | ovex 7308 |
. . 3
⊢ ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ V |
27 | | selvval.u |
. . . . 5
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
28 | 27 | eqeq2i 2751 |
. . . 4
⊢ (𝑢 = 𝑈 ↔ 𝑢 = ((𝐼 ∖ 𝐽) mPoly 𝑅)) |
29 | | oveq2 7283 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈)) |
30 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈)) |
31 | 30 | coeq2d 5771 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈))) |
32 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈)) |
33 | 32 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥)) |
34 | 33 | ifeq1d 4478 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) = if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
35 | 34 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
36 | 35 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
37 | 31, 36 | csbeq12dv 3841 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
38 | 37 | csbeq2dv 3839 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
39 | 29, 38 | csbeq12dv 3841 |
. . . . 5
⊢ (𝑢 = 𝑈 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐽 mPoly 𝑈) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
40 | | ovex 7308 |
. . . . . 6
⊢ (𝐽 mPoly 𝑈) ∈ V |
41 | | selvval.t |
. . . . . . . 8
⊢ 𝑇 = (𝐽 mPoly 𝑈) |
42 | 41 | eqeq2i 2751 |
. . . . . . 7
⊢ (𝑡 = 𝑇 ↔ 𝑡 = (𝐽 mPoly 𝑈)) |
43 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇)) |
44 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇)) |
45 | 44 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑)) |
46 | 45 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))) |
47 | 46 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
48 | 47 | csbeq2dv 3839 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
49 | 43, 48 | csbeq12dv 3841 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(algSc‘𝑇) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
50 | | fvex 6787 |
. . . . . . . . 9
⊢
(algSc‘𝑇)
∈ V |
51 | | selvval.c |
. . . . . . . . . . 11
⊢ 𝐶 = (algSc‘𝑇) |
52 | 51 | eqeq2i 2751 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 ↔ 𝑐 = (algSc‘𝑇)) |
53 | | coeq1 5766 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈))) |
54 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝐶 → (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) |
55 | 54 | ifeq2d 4479 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝐶 → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) = if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
56 | 55 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝐶 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
57 | 56 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
58 | 53, 57 | csbeq12dv 3841 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ⦋(𝐶 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
59 | 51 | fvexi 6788 |
. . . . . . . . . . . . 13
⊢ 𝐶 ∈ V |
60 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢
(algSc‘𝑈)
∈ V |
61 | 59, 60 | coex 7777 |
. . . . . . . . . . . 12
⊢ (𝐶 ∘ (algSc‘𝑈)) ∈ V |
62 | | selvval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) |
63 | 62 | eqeq2i 2751 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝐷 ↔ 𝑑 = (𝐶 ∘ (algSc‘𝑈))) |
64 | | rneq 5845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷) |
65 | 64 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷)) |
66 | | coeq1 5766 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝐷 → (𝑑 ∘ 𝐹) = (𝐷 ∘ 𝐹)) |
67 | 65, 66 | fveq12d 6781 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))) |
68 | 67 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
69 | 63, 68 | sylbir 234 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
70 | 61, 69 | csbie 3868 |
. . . . . . . . . . 11
⊢
⦋(𝐶
∘ (algSc‘𝑈)) /
𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
71 | 58, 70 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
72 | 52, 71 | sylbir 234 |
. . . . . . . . 9
⊢ (𝑐 = (algSc‘𝑇) → ⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
73 | 50, 72 | csbie 3868 |
. . . . . . . 8
⊢
⦋(algSc‘𝑇) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
74 | 49, 73 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
75 | 42, 74 | sylbir 234 |
. . . . . 6
⊢ (𝑡 = (𝐽 mPoly 𝑈) → ⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
76 | 40, 75 | csbie 3868 |
. . . . 5
⊢
⦋(𝐽
mPoly 𝑈) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑈)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
77 | 39, 76 | eqtrdi 2794 |
. . . 4
⊢ (𝑢 = 𝑈 → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
78 | 28, 77 | sylbir 234 |
. . 3
⊢ (𝑢 = ((𝐼 ∖ 𝐽) mPoly 𝑅) → ⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
79 | 26, 78 | csbie 3868 |
. 2
⊢
⦋((𝐼
∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) |
80 | 25, 79 | eqtrdi 2794 |
1
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |