MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvval Structured version   Visualization version   GIF version

Theorem selvval 22038
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvval.b 𝐵 = (Base‘𝑃)
selvval.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval.t 𝑇 = (𝐽 mPoly 𝑈)
selvval.c 𝐶 = (algSc‘𝑇)
selvval.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval.j (𝜑𝐽𝐼)
selvval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)

Proof of Theorem selvval
Dummy variables 𝑓 𝑢 𝑡 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5805 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑑𝑓) = (𝑑𝐹))
21fveq2d 6830 . . . . . . . 8 (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)))
32fveq1d 6828 . . . . . . 7 (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
43csbeq2dv 3860 . . . . . 6 (𝑓 = 𝐹(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
54csbeq2dv 3860 . . . . 5 (𝑓 = 𝐹(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
65csbeq2dv 3860 . . . 4 (𝑓 = 𝐹(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
76csbeq2dv 3860 . . 3 (𝑓 = 𝐹((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8 selvval.f . . . . . 6 (𝜑𝐹𝐵)
9 reldmmpl 21913 . . . . . . 7 Rel dom mPoly
10 selvval.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
11 selvval.b . . . . . . 7 𝐵 = (Base‘𝑃)
129, 10, 11elbasov 17145 . . . . . 6 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
138, 12syl 17 . . . . 5 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1413simpld 494 . . . 4 (𝜑𝐼 ∈ V)
1513simprd 495 . . . 4 (𝜑𝑅 ∈ V)
16 selvval.j . . . 4 (𝜑𝐽𝐼)
1714, 15, 16selvfval 22037 . . 3 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
1810fveq2i 6829 . . . . 5 (Base‘𝑃) = (Base‘(𝐼 mPoly 𝑅))
1911, 18eqtri 2752 . . . 4 𝐵 = (Base‘(𝐼 mPoly 𝑅))
208, 19eleqtrdi 2838 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑅)))
21 fvex 6839 . . . . . . . 8 ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2221csbex 5253 . . . . . . 7 (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2322csbex 5253 . . . . . 6 (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2423csbex 5253 . . . . 5 (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2524csbex 5253 . . . 4 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2625a1i 11 . . 3 (𝜑((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V)
277, 17, 20, 26fvmptd4 6958 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
28 ovex 7386 . . 3 ((𝐼𝐽) mPoly 𝑅) ∈ V
29 selvval.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
3029eqeq2i 2742 . . . 4 (𝑢 = 𝑈𝑢 = ((𝐼𝐽) mPoly 𝑅))
31 oveq2 7361 . . . . . 6 (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈))
32 fveq2 6826 . . . . . . . . 9 (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈))
3332coeq2d 5809 . . . . . . . 8 (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈)))
34 oveq2 7361 . . . . . . . . . . . 12 (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈))
3534fveq1d 6828 . . . . . . . . . . 11 (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥))
3635ifeq1d 4498 . . . . . . . . . 10 (𝑢 = 𝑈 → if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3736mpteq2dv 5189 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
3837fveq2d 6830 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3933, 38csbeq12dv 3862 . . . . . . 7 (𝑢 = 𝑈(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4039csbeq2dv 3860 . . . . . 6 (𝑢 = 𝑈(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4131, 40csbeq12dv 3862 . . . . 5 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
42 ovex 7386 . . . . . 6 (𝐽 mPoly 𝑈) ∈ V
43 selvval.t . . . . . . . 8 𝑇 = (𝐽 mPoly 𝑈)
4443eqeq2i 2742 . . . . . . 7 (𝑡 = 𝑇𝑡 = (𝐽 mPoly 𝑈))
45 fveq2 6826 . . . . . . . . 9 (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇))
46 oveq2 7361 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇))
4746fveq1d 6828 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑))
4847fveq1d 6828 . . . . . . . . . . 11 (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)))
4948fveq1d 6828 . . . . . . . . . 10 (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5049csbeq2dv 3860 . . . . . . . . 9 (𝑡 = 𝑇(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5145, 50csbeq12dv 3862 . . . . . . . 8 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
52 fvex 6839 . . . . . . . . 9 (algSc‘𝑇) ∈ V
53 selvval.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑇)
5453eqeq2i 2742 . . . . . . . . . 10 (𝑐 = 𝐶𝑐 = (algSc‘𝑇))
55 coeq1 5804 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈)))
56 fveq1 6825 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
5756ifeq2d 4499 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
5857mpteq2dv 5189 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
5958fveq2d 6830 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6055, 59csbeq12dv 3862 . . . . . . . . . . 11 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6153fvexi 6840 . . . . . . . . . . . . 13 𝐶 ∈ V
62 fvex 6839 . . . . . . . . . . . . 13 (algSc‘𝑈) ∈ V
6361, 62coex 7870 . . . . . . . . . . . 12 (𝐶 ∘ (algSc‘𝑈)) ∈ V
64 selvval.d . . . . . . . . . . . . . 14 𝐷 = (𝐶 ∘ (algSc‘𝑈))
6564eqeq2i 2742 . . . . . . . . . . . . 13 (𝑑 = 𝐷𝑑 = (𝐶 ∘ (algSc‘𝑈)))
66 rneq 5882 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷)
6766fveq2d 6830 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷))
68 coeq1 5804 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑𝐹) = (𝐷𝐹))
6967, 68fveq12d 6833 . . . . . . . . . . . . . 14 (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)))
7069fveq1d 6828 . . . . . . . . . . . . 13 (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7165, 70sylbir 235 . . . . . . . . . . . 12 (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7263, 71csbie 3888 . . . . . . . . . . 11 (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7360, 72eqtrdi 2780 . . . . . . . . . 10 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7454, 73sylbir 235 . . . . . . . . 9 (𝑐 = (algSc‘𝑇) → (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7552, 74csbie 3888 . . . . . . . 8 (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7651, 75eqtrdi 2780 . . . . . . 7 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7744, 76sylbir 235 . . . . . 6 (𝑡 = (𝐽 mPoly 𝑈) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7842, 77csbie 3888 . . . . 5 (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7941, 78eqtrdi 2780 . . . 4 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8030, 79sylbir 235 . . 3 (𝑢 = ((𝐼𝐽) mPoly 𝑅) → (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
8128, 80csbie 3888 . 2 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
8227, 81eqtrdi 2780 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  cdif 3902  wss 3905  ifcif 4478  cmpt 5176  ran crn 5624  ccom 5627  cfv 6486  (class class class)co 7353  Basecbs 17138  algSccascl 21777   mVar cmvr 21830   mPoly cmpl 21831   evalSub ces 21995   selectVars cslv 22031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-mpl 21836  df-selv 22035
This theorem is referenced by:  selvcl  42556  selvval2  42557
  Copyright terms: Public domain W3C validator