MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvval Structured version   Visualization version   GIF version

Theorem selvval 20790
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvval.b 𝐵 = (Base‘𝑃)
selvval.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval.t 𝑇 = (𝐽 mPoly 𝑈)
selvval.c 𝐶 = (algSc‘𝑇)
selvval.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval.i (𝜑𝐼𝑉)
selvval.r (𝜑𝑅𝑊)
selvval.j (𝜑𝐽𝐼)
selvval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem selvval
Dummy variables 𝑓 𝑢 𝑡 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selvval.i . . . 4 (𝜑𝐼𝑉)
2 selvval.r . . . 4 (𝜑𝑅𝑊)
3 selvval.j . . . 4 (𝜑𝐽𝐼)
41, 2, 3selvfval 20789 . . 3 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
5 coeq2 5693 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑑𝑓) = (𝑑𝐹))
65fveq2d 6649 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)))
76fveq1d 6647 . . . . . . . 8 (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
87csbeq2dv 3835 . . . . . . 7 (𝑓 = 𝐹(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
98csbeq2dv 3835 . . . . . 6 (𝑓 = 𝐹(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
109csbeq2dv 3835 . . . . 5 (𝑓 = 𝐹(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1110csbeq2dv 3835 . . . 4 (𝑓 = 𝐹((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1211adantl 485 . . 3 ((𝜑𝑓 = 𝐹) → ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
13 selvval.f . . . 4 (𝜑𝐹𝐵)
14 selvval.b . . . . 5 𝐵 = (Base‘𝑃)
15 selvval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
1615fveq2i 6648 . . . . 5 (Base‘𝑃) = (Base‘(𝐼 mPoly 𝑅))
1714, 16eqtri 2821 . . . 4 𝐵 = (Base‘(𝐼 mPoly 𝑅))
1813, 17eleqtrdi 2900 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑅)))
19 fvex 6658 . . . . . . . 8 ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2019csbex 5179 . . . . . . 7 (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2120csbex 5179 . . . . . 6 (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2221csbex 5179 . . . . 5 (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2322csbex 5179 . . . 4 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2423a1i 11 . . 3 (𝜑((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V)
254, 12, 18, 24fvmptd 6752 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
26 ovex 7168 . . 3 ((𝐼𝐽) mPoly 𝑅) ∈ V
27 selvval.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
2827eqeq2i 2811 . . . 4 (𝑢 = 𝑈𝑢 = ((𝐼𝐽) mPoly 𝑅))
29 oveq2 7143 . . . . . 6 (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈))
30 fveq2 6645 . . . . . . . . 9 (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈))
3130coeq2d 5697 . . . . . . . 8 (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈)))
32 oveq2 7143 . . . . . . . . . . . 12 (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈))
3332fveq1d 6647 . . . . . . . . . . 11 (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥))
3433ifeq1d 4443 . . . . . . . . . 10 (𝑢 = 𝑈 → if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3534mpteq2dv 5126 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
3635fveq2d 6649 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3731, 36csbeq12dv 3837 . . . . . . 7 (𝑢 = 𝑈(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3837csbeq2dv 3835 . . . . . 6 (𝑢 = 𝑈(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3929, 38csbeq12dv 3837 . . . . 5 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
40 ovex 7168 . . . . . 6 (𝐽 mPoly 𝑈) ∈ V
41 selvval.t . . . . . . . 8 𝑇 = (𝐽 mPoly 𝑈)
4241eqeq2i 2811 . . . . . . 7 (𝑡 = 𝑇𝑡 = (𝐽 mPoly 𝑈))
43 fveq2 6645 . . . . . . . . 9 (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇))
44 oveq2 7143 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇))
4544fveq1d 6647 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑))
4645fveq1d 6647 . . . . . . . . . . 11 (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)))
4746fveq1d 6647 . . . . . . . . . 10 (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4847csbeq2dv 3835 . . . . . . . . 9 (𝑡 = 𝑇(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4943, 48csbeq12dv 3837 . . . . . . . 8 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
50 fvex 6658 . . . . . . . . 9 (algSc‘𝑇) ∈ V
51 selvval.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑇)
5251eqeq2i 2811 . . . . . . . . . 10 (𝑐 = 𝐶𝑐 = (algSc‘𝑇))
53 coeq1 5692 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈)))
54 fveq1 6644 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
5554ifeq2d 4444 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
5655mpteq2dv 5126 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
5756fveq2d 6649 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5853, 57csbeq12dv 3837 . . . . . . . . . . 11 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5951fvexi 6659 . . . . . . . . . . . . 13 𝐶 ∈ V
60 fvex 6658 . . . . . . . . . . . . 13 (algSc‘𝑈) ∈ V
6159, 60coex 7617 . . . . . . . . . . . 12 (𝐶 ∘ (algSc‘𝑈)) ∈ V
62 selvval.d . . . . . . . . . . . . . 14 𝐷 = (𝐶 ∘ (algSc‘𝑈))
6362eqeq2i 2811 . . . . . . . . . . . . 13 (𝑑 = 𝐷𝑑 = (𝐶 ∘ (algSc‘𝑈)))
64 rneq 5770 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷)
6564fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷))
66 coeq1 5692 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑𝐹) = (𝐷𝐹))
6765, 66fveq12d 6652 . . . . . . . . . . . . . 14 (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)))
6867fveq1d 6647 . . . . . . . . . . . . 13 (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6963, 68sylbir 238 . . . . . . . . . . . 12 (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7061, 69csbie 3863 . . . . . . . . . . 11 (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7158, 70eqtrdi 2849 . . . . . . . . . 10 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7252, 71sylbir 238 . . . . . . . . 9 (𝑐 = (algSc‘𝑇) → (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7350, 72csbie 3863 . . . . . . . 8 (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7449, 73eqtrdi 2849 . . . . . . 7 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7542, 74sylbir 238 . . . . . 6 (𝑡 = (𝐽 mPoly 𝑈) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7640, 75csbie 3863 . . . . 5 (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7739, 76eqtrdi 2849 . . . 4 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7828, 77sylbir 238 . . 3 (𝑢 = ((𝐼𝐽) mPoly 𝑅) → (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7926, 78csbie 3863 . 2 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
8025, 79eqtrdi 2849 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  csb 3828  cdif 3878  wss 3881  ifcif 4425  cmpt 5110  ran crn 5520  ccom 5523  cfv 6324  (class class class)co 7135  Basecbs 16475  algSccascl 20541   mVar cmvr 20590   mPoly cmpl 20591   evalSub ces 20743   selectVars cslv 20780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-selv 20784
This theorem is referenced by:  selvcl  39433
  Copyright terms: Public domain W3C validator