MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvval Structured version   Visualization version   GIF version

Theorem selvval 22088
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvval.b 𝐵 = (Base‘𝑃)
selvval.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval.t 𝑇 = (𝐽 mPoly 𝑈)
selvval.c 𝐶 = (algSc‘𝑇)
selvval.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval.i (𝜑𝐼𝑉)
selvval.r (𝜑𝑅𝑊)
selvval.j (𝜑𝐽𝐼)
selvval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem selvval
Dummy variables 𝑓 𝑢 𝑡 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selvval.i . . . 4 (𝜑𝐼𝑉)
2 selvval.r . . . 4 (𝜑𝑅𝑊)
3 selvval.j . . . 4 (𝜑𝐽𝐼)
41, 2, 3selvfval 22087 . . 3 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
5 coeq2 5861 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑑𝑓) = (𝑑𝐹))
65fveq2d 6900 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)))
76fveq1d 6898 . . . . . . . 8 (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
87csbeq2dv 3896 . . . . . . 7 (𝑓 = 𝐹(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
98csbeq2dv 3896 . . . . . 6 (𝑓 = 𝐹(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
109csbeq2dv 3896 . . . . 5 (𝑓 = 𝐹(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1110csbeq2dv 3896 . . . 4 (𝑓 = 𝐹((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1211adantl 480 . . 3 ((𝜑𝑓 = 𝐹) → ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
13 selvval.f . . . 4 (𝜑𝐹𝐵)
14 selvval.b . . . . 5 𝐵 = (Base‘𝑃)
15 selvval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
1615fveq2i 6899 . . . . 5 (Base‘𝑃) = (Base‘(𝐼 mPoly 𝑅))
1714, 16eqtri 2753 . . . 4 𝐵 = (Base‘(𝐼 mPoly 𝑅))
1813, 17eleqtrdi 2835 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑅)))
19 fvex 6909 . . . . . . . 8 ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2019csbex 5312 . . . . . . 7 (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2120csbex 5312 . . . . . 6 (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2221csbex 5312 . . . . 5 (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2322csbex 5312 . . . 4 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2423a1i 11 . . 3 (𝜑((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V)
254, 12, 18, 24fvmptd 7011 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
26 ovex 7452 . . 3 ((𝐼𝐽) mPoly 𝑅) ∈ V
27 selvval.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
2827eqeq2i 2738 . . . 4 (𝑢 = 𝑈𝑢 = ((𝐼𝐽) mPoly 𝑅))
29 oveq2 7427 . . . . . 6 (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈))
30 fveq2 6896 . . . . . . . . 9 (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈))
3130coeq2d 5865 . . . . . . . 8 (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈)))
32 oveq2 7427 . . . . . . . . . . . 12 (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈))
3332fveq1d 6898 . . . . . . . . . . 11 (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥))
3433ifeq1d 4549 . . . . . . . . . 10 (𝑢 = 𝑈 → if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3534mpteq2dv 5251 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
3635fveq2d 6900 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3731, 36csbeq12dv 3898 . . . . . . 7 (𝑢 = 𝑈(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3837csbeq2dv 3896 . . . . . 6 (𝑢 = 𝑈(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3929, 38csbeq12dv 3898 . . . . 5 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
40 ovex 7452 . . . . . 6 (𝐽 mPoly 𝑈) ∈ V
41 selvval.t . . . . . . . 8 𝑇 = (𝐽 mPoly 𝑈)
4241eqeq2i 2738 . . . . . . 7 (𝑡 = 𝑇𝑡 = (𝐽 mPoly 𝑈))
43 fveq2 6896 . . . . . . . . 9 (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇))
44 oveq2 7427 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇))
4544fveq1d 6898 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑))
4645fveq1d 6898 . . . . . . . . . . 11 (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)))
4746fveq1d 6898 . . . . . . . . . 10 (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4847csbeq2dv 3896 . . . . . . . . 9 (𝑡 = 𝑇(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4943, 48csbeq12dv 3898 . . . . . . . 8 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
50 fvex 6909 . . . . . . . . 9 (algSc‘𝑇) ∈ V
51 selvval.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑇)
5251eqeq2i 2738 . . . . . . . . . 10 (𝑐 = 𝐶𝑐 = (algSc‘𝑇))
53 coeq1 5860 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈)))
54 fveq1 6895 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
5554ifeq2d 4550 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
5655mpteq2dv 5251 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
5756fveq2d 6900 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5853, 57csbeq12dv 3898 . . . . . . . . . . 11 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5951fvexi 6910 . . . . . . . . . . . . 13 𝐶 ∈ V
60 fvex 6909 . . . . . . . . . . . . 13 (algSc‘𝑈) ∈ V
6159, 60coex 7938 . . . . . . . . . . . 12 (𝐶 ∘ (algSc‘𝑈)) ∈ V
62 selvval.d . . . . . . . . . . . . . 14 𝐷 = (𝐶 ∘ (algSc‘𝑈))
6362eqeq2i 2738 . . . . . . . . . . . . 13 (𝑑 = 𝐷𝑑 = (𝐶 ∘ (algSc‘𝑈)))
64 rneq 5938 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷)
6564fveq2d 6900 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷))
66 coeq1 5860 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑𝐹) = (𝐷𝐹))
6765, 66fveq12d 6903 . . . . . . . . . . . . . 14 (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)))
6867fveq1d 6898 . . . . . . . . . . . . 13 (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6963, 68sylbir 234 . . . . . . . . . . . 12 (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7061, 69csbie 3925 . . . . . . . . . . 11 (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7158, 70eqtrdi 2781 . . . . . . . . . 10 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7252, 71sylbir 234 . . . . . . . . 9 (𝑐 = (algSc‘𝑇) → (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7350, 72csbie 3925 . . . . . . . 8 (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7449, 73eqtrdi 2781 . . . . . . 7 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7542, 74sylbir 234 . . . . . 6 (𝑡 = (𝐽 mPoly 𝑈) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7640, 75csbie 3925 . . . . 5 (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7739, 76eqtrdi 2781 . . . 4 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7828, 77sylbir 234 . . 3 (𝑢 = ((𝐼𝐽) mPoly 𝑅) → (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7926, 78csbie 3925 . 2 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
8025, 79eqtrdi 2781 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3461  csb 3889  cdif 3941  wss 3944  ifcif 4530  cmpt 5232  ran crn 5679  ccom 5682  cfv 6549  (class class class)co 7419  Basecbs 17188  algSccascl 21808   mVar cmvr 21860   mPoly cmpl 21861   evalSub ces 22043   selectVars cslv 22081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-selv 22085
This theorem is referenced by:  selvcl  41953  selvval2  41954
  Copyright terms: Public domain W3C validator