MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selvval Structured version   Visualization version   GIF version

Theorem selvval 20326
Description: Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.)
Hypotheses
Ref Expression
selvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvval.b 𝐵 = (Base‘𝑃)
selvval.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval.t 𝑇 = (𝐽 mPoly 𝑈)
selvval.c 𝐶 = (algSc‘𝑇)
selvval.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval.i (𝜑𝐼𝑉)
selvval.r (𝜑𝑅𝑊)
selvval.j (𝜑𝐽𝐼)
selvval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem selvval
Dummy variables 𝑓 𝑢 𝑡 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selvval.i . . . 4 (𝜑𝐼𝑉)
2 selvval.r . . . 4 (𝜑𝑅𝑊)
3 selvval.j . . . 4 (𝜑𝐽𝐼)
41, 2, 3selvfval 20325 . . 3 (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))))
5 coeq2 5722 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑑𝑓) = (𝑑𝐹))
65fveq2d 6667 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓)) = (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)))
76fveq1d 6665 . . . . . . . 8 (𝑓 = 𝐹 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
87csbeq2dv 3883 . . . . . . 7 (𝑓 = 𝐹(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
98csbeq2dv 3883 . . . . . 6 (𝑓 = 𝐹(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
109csbeq2dv 3883 . . . . 5 (𝑓 = 𝐹(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1110csbeq2dv 3883 . . . 4 (𝑓 = 𝐹((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
1211adantl 484 . . 3 ((𝜑𝑓 = 𝐹) → ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
13 selvval.f . . . 4 (𝜑𝐹𝐵)
14 selvval.b . . . . 5 𝐵 = (Base‘𝑃)
15 selvval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
1615fveq2i 6666 . . . . 5 (Base‘𝑃) = (Base‘(𝐼 mPoly 𝑅))
1714, 16eqtri 2843 . . . 4 𝐵 = (Base‘(𝐼 mPoly 𝑅))
1813, 17eleqtrdi 2922 . . 3 (𝜑𝐹 ∈ (Base‘(𝐼 mPoly 𝑅)))
19 fvex 6676 . . . . . . . 8 ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2019csbex 5208 . . . . . . 7 (𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2120csbex 5208 . . . . . 6 (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2221csbex 5208 . . . . 5 (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2322csbex 5208 . . . 4 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V
2423a1i 11 . . 3 (𝜑((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) ∈ V)
254, 12, 18, 24fvmptd 6768 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
26 ovex 7182 . . 3 ((𝐼𝐽) mPoly 𝑅) ∈ V
27 selvval.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
2827eqeq2i 2833 . . . 4 (𝑢 = 𝑈𝑢 = ((𝐼𝐽) mPoly 𝑅))
29 oveq2 7157 . . . . . 6 (𝑢 = 𝑈 → (𝐽 mPoly 𝑢) = (𝐽 mPoly 𝑈))
30 fveq2 6663 . . . . . . . . 9 (𝑢 = 𝑈 → (algSc‘𝑢) = (algSc‘𝑈))
3130coeq2d 5726 . . . . . . . 8 (𝑢 = 𝑈 → (𝑐 ∘ (algSc‘𝑢)) = (𝑐 ∘ (algSc‘𝑈)))
32 oveq2 7157 . . . . . . . . . . . 12 (𝑢 = 𝑈 → (𝐽 mVar 𝑢) = (𝐽 mVar 𝑈))
3332fveq1d 6665 . . . . . . . . . . 11 (𝑢 = 𝑈 → ((𝐽 mVar 𝑢)‘𝑥) = ((𝐽 mVar 𝑈)‘𝑥))
3433ifeq1d 4478 . . . . . . . . . 10 (𝑢 = 𝑈 → if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3534mpteq2dv 5155 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
3635fveq2d 6667 . . . . . . . 8 (𝑢 = 𝑈 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3731, 36csbeq12dv 3885 . . . . . . 7 (𝑢 = 𝑈(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3837csbeq2dv 3883 . . . . . 6 (𝑢 = 𝑈(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
3929, 38csbeq12dv 3885 . . . . 5 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
40 ovex 7182 . . . . . 6 (𝐽 mPoly 𝑈) ∈ V
41 selvval.t . . . . . . . 8 𝑇 = (𝐽 mPoly 𝑈)
4241eqeq2i 2833 . . . . . . 7 (𝑡 = 𝑇𝑡 = (𝐽 mPoly 𝑈))
43 fveq2 6663 . . . . . . . . 9 (𝑡 = 𝑇 → (algSc‘𝑡) = (algSc‘𝑇))
44 oveq2 7157 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐼 evalSub 𝑡) = (𝐼 evalSub 𝑇))
4544fveq1d 6665 . . . . . . . . . . . 12 (𝑡 = 𝑇 → ((𝐼 evalSub 𝑡)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝑑))
4645fveq1d 6665 . . . . . . . . . . 11 (𝑡 = 𝑇 → (((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)))
4746fveq1d 6665 . . . . . . . . . 10 (𝑡 = 𝑇 → ((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4847csbeq2dv 3883 . . . . . . . . 9 (𝑡 = 𝑇(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
4943, 48csbeq12dv 3885 . . . . . . . 8 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
50 fvex 6676 . . . . . . . . 9 (algSc‘𝑇) ∈ V
51 selvval.c . . . . . . . . . . 11 𝐶 = (algSc‘𝑇)
5251eqeq2i 2833 . . . . . . . . . 10 (𝑐 = 𝐶𝑐 = (algSc‘𝑇))
53 coeq1 5721 . . . . . . . . . . . 12 (𝑐 = 𝐶 → (𝑐 ∘ (algSc‘𝑈)) = (𝐶 ∘ (algSc‘𝑈)))
54 fveq1 6662 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) = (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))
5554ifeq2d 4479 . . . . . . . . . . . . . 14 (𝑐 = 𝐶 → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) = if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
5655mpteq2dv 5155 . . . . . . . . . . . . 13 (𝑐 = 𝐶 → (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))) = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
5756fveq2d 6667 . . . . . . . . . . . 12 (𝑐 = 𝐶 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5853, 57csbeq12dv 3885 . . . . . . . . . . 11 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
5951fvexi 6677 . . . . . . . . . . . . 13 𝐶 ∈ V
60 fvex 6676 . . . . . . . . . . . . 13 (algSc‘𝑈) ∈ V
6159, 60coex 7628 . . . . . . . . . . . 12 (𝐶 ∘ (algSc‘𝑈)) ∈ V
62 selvval.d . . . . . . . . . . . . . 14 𝐷 = (𝐶 ∘ (algSc‘𝑈))
6362eqeq2i 2833 . . . . . . . . . . . . 13 (𝑑 = 𝐷𝑑 = (𝐶 ∘ (algSc‘𝑈)))
64 rneq 5799 . . . . . . . . . . . . . . . 16 (𝑑 = 𝐷 → ran 𝑑 = ran 𝐷)
6564fveq2d 6667 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → ((𝐼 evalSub 𝑇)‘ran 𝑑) = ((𝐼 evalSub 𝑇)‘ran 𝐷))
66 coeq1 5721 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑𝐹) = (𝐷𝐹))
6765, 66fveq12d 6670 . . . . . . . . . . . . . 14 (𝑑 = 𝐷 → (((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹)) = (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)))
6867fveq1d 6665 . . . . . . . . . . . . 13 (𝑑 = 𝐷 → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
6963, 68sylbir 237 . . . . . . . . . . . 12 (𝑑 = (𝐶 ∘ (algSc‘𝑈)) → ((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7061, 69csbie 3911 . . . . . . . . . . 11 (𝐶 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7158, 70syl6eq 2871 . . . . . . . . . 10 (𝑐 = 𝐶(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7252, 71sylbir 237 . . . . . . . . 9 (𝑐 = (algSc‘𝑇) → (𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7350, 72csbie 3911 . . . . . . . 8 (algSc‘𝑇) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑇)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7449, 73syl6eq 2871 . . . . . . 7 (𝑡 = 𝑇(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7542, 74sylbir 237 . . . . . 6 (𝑡 = (𝐽 mPoly 𝑈) → (algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7640, 75csbie 3911 . . . . 5 (𝐽 mPoly 𝑈) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑈)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
7739, 76syl6eq 2871 . . . 4 (𝑢 = 𝑈(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7828, 77sylbir 237 . . 3 (𝑢 = ((𝐼𝐽) mPoly 𝑅) → (𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
7926, 78csbie 3911 . 2 ((𝐼𝐽) mPoly 𝑅) / 𝑢(𝐽 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)))))
8025, 79syl6eq 2871 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  Vcvv 3491  csb 3876  cdif 3926  wss 3929  ifcif 4460  cmpt 5139  ran crn 5549  ccom 5552  cfv 6348  (class class class)co 7149  Basecbs 16478  algSccascl 20079   mVar cmvr 20127   mPoly cmpl 20128   evalSub ces 20279   selectVars cslv 20316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-selv 20320
This theorem is referenced by:  selvcl  39214
  Copyright terms: Public domain W3C validator