Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   GIF version

Theorem curfv 37640
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Proof of Theorem curfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6875 . . . . . . . . . 10 (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
2 cureq 37636 . . . . . . . . . 10 (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
31, 2sylbi 217 . . . . . . . . 9 (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
43adantr 480 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
5 fveq2 6817 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
65mpompt 7455 . . . . . . . . 9 (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉, 𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))
7 fvex 6830 . . . . . . . . . . 11 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
87rgen2w 3052 . . . . . . . . . 10 𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
98a1i 11 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → ∀𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V)
10 ne0i 4286 . . . . . . . . . 10 (𝐵𝑊𝑊 ≠ ∅)
1110adantl 481 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → 𝑊 ≠ ∅)
126, 9, 11mpocurryd 8194 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
134, 12eqtrd 2766 . . . . . . 7 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
14133adant2 1131 . . . . . 6 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
1514fveq1d 6819 . . . . 5 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
1615adantr 480 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
17 mptexg 7150 . . . . . 6 (𝑊𝑋 → (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V)
18 opeq1 4820 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1918fveq2d 6821 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹‘⟨𝑥, 𝑦⟩) = (𝐹‘⟨𝐴, 𝑦⟩))
2019mpteq2dv 5180 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
21 eqid 2731 . . . . . . 7 (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
2220, 21fvmptg 6922 . . . . . 6 ((𝐴𝑉 ∧ (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2317, 22sylan2 593 . . . . 5 ((𝐴𝑉𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
24233ad2antl2 1187 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2516, 24eqtrd 2766 . . 3 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2625fveq1d 6819 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵))
27 opeq2 4821 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827fveq2d 6821 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘⟨𝐴, 𝑦⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
29 eqid 2731 . . . . . 6 (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))
30 fvex 6830 . . . . . 6 (𝐹‘⟨𝐴, 𝐵⟩) ∈ V
3128, 29, 30fvmpt 6924 . . . . 5 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐹‘⟨𝐴, 𝐵⟩))
32 df-ov 7344 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3331, 32eqtr4di 2784 . . . 4 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
34333ad2ant3 1135 . . 3 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3534adantr 480 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3626, 35eqtrd 2766 1 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  c0 4278  cop 4577  cmpt 5167   × cxp 5609   Fn wfn 6471  cfv 6476  (class class class)co 7341  curry ccur 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cur 8192
This theorem is referenced by:  unccur  37643  matunitlindflem1  37656  matunitlindflem2  37657
  Copyright terms: Public domain W3C validator