Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   GIF version

Theorem curfv 35037
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Proof of Theorem curfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6699 . . . . . . . . . 10 (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
2 cureq 35033 . . . . . . . . . 10 (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
31, 2sylbi 220 . . . . . . . . 9 (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
43adantr 484 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
5 fveq2 6645 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
65mpompt 7245 . . . . . . . . 9 (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉, 𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))
7 fvex 6658 . . . . . . . . . . 11 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
87rgen2w 3119 . . . . . . . . . 10 𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
98a1i 11 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → ∀𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V)
10 ne0i 4250 . . . . . . . . . 10 (𝐵𝑊𝑊 ≠ ∅)
1110adantl 485 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → 𝑊 ≠ ∅)
126, 9, 11mpocurryd 7918 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
134, 12eqtrd 2833 . . . . . . 7 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
14133adant2 1128 . . . . . 6 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
1514fveq1d 6647 . . . . 5 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
1615adantr 484 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
17 mptexg 6961 . . . . . 6 (𝑊𝑋 → (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V)
18 opeq1 4763 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1918fveq2d 6649 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹‘⟨𝑥, 𝑦⟩) = (𝐹‘⟨𝐴, 𝑦⟩))
2019mpteq2dv 5126 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
21 eqid 2798 . . . . . . 7 (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
2220, 21fvmptg 6743 . . . . . 6 ((𝐴𝑉 ∧ (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2317, 22sylan2 595 . . . . 5 ((𝐴𝑉𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
24233ad2antl2 1183 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2516, 24eqtrd 2833 . . 3 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2625fveq1d 6647 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵))
27 opeq2 4765 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827fveq2d 6649 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘⟨𝐴, 𝑦⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
29 eqid 2798 . . . . . 6 (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))
30 fvex 6658 . . . . . 6 (𝐹‘⟨𝐴, 𝐵⟩) ∈ V
3128, 29, 30fvmpt 6745 . . . . 5 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐹‘⟨𝐴, 𝐵⟩))
32 df-ov 7138 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3331, 32eqtr4di 2851 . . . 4 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
34333ad2ant3 1132 . . 3 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3534adantr 484 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3626, 35eqtrd 2833 1 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  c0 4243  cop 4531  cmpt 5110   × cxp 5517   Fn wfn 6319  cfv 6324  (class class class)co 7135  curry ccur 7914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-cur 7916
This theorem is referenced by:  unccur  35040  matunitlindflem1  35053  matunitlindflem2  35054
  Copyright terms: Public domain W3C validator