Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   GIF version

Theorem curfv 35400
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Proof of Theorem curfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6728 . . . . . . . . . 10 (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
2 cureq 35396 . . . . . . . . . 10 (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
31, 2sylbi 220 . . . . . . . . 9 (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
43adantr 484 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
5 fveq2 6674 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
65mpompt 7280 . . . . . . . . 9 (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉, 𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))
7 fvex 6687 . . . . . . . . . . 11 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
87rgen2w 3066 . . . . . . . . . 10 𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
98a1i 11 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → ∀𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V)
10 ne0i 4223 . . . . . . . . . 10 (𝐵𝑊𝑊 ≠ ∅)
1110adantl 485 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → 𝑊 ≠ ∅)
126, 9, 11mpocurryd 7964 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
134, 12eqtrd 2773 . . . . . . 7 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
14133adant2 1132 . . . . . 6 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
1514fveq1d 6676 . . . . 5 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
1615adantr 484 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
17 mptexg 6994 . . . . . 6 (𝑊𝑋 → (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V)
18 opeq1 4759 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1918fveq2d 6678 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹‘⟨𝑥, 𝑦⟩) = (𝐹‘⟨𝐴, 𝑦⟩))
2019mpteq2dv 5126 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
21 eqid 2738 . . . . . . 7 (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
2220, 21fvmptg 6773 . . . . . 6 ((𝐴𝑉 ∧ (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2317, 22sylan2 596 . . . . 5 ((𝐴𝑉𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
24233ad2antl2 1187 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2516, 24eqtrd 2773 . . 3 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2625fveq1d 6676 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵))
27 opeq2 4761 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827fveq2d 6678 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘⟨𝐴, 𝑦⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
29 eqid 2738 . . . . . 6 (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))
30 fvex 6687 . . . . . 6 (𝐹‘⟨𝐴, 𝐵⟩) ∈ V
3128, 29, 30fvmpt 6775 . . . . 5 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐹‘⟨𝐴, 𝐵⟩))
32 df-ov 7173 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3331, 32eqtr4di 2791 . . . 4 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
34333ad2ant3 1136 . . 3 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3534adantr 484 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3626, 35eqtrd 2773 1 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  Vcvv 3398  c0 4211  cop 4522  cmpt 5110   × cxp 5523   Fn wfn 6334  cfv 6339  (class class class)co 7170  curry ccur 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-cur 7962
This theorem is referenced by:  unccur  35403  matunitlindflem1  35416  matunitlindflem2  35417
  Copyright terms: Public domain W3C validator