Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curfv Structured version   Visualization version   GIF version

Theorem curfv 37629
Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curfv (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))

Proof of Theorem curfv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffn5 6942 . . . . . . . . . 10 (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
2 cureq 37625 . . . . . . . . . 10 (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
31, 2sylbi 217 . . . . . . . . 9 (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
43adantr 480 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)))
5 fveq2 6881 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
65mpompt 7526 . . . . . . . . 9 (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉, 𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))
7 fvex 6894 . . . . . . . . . . 11 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
87rgen2w 3057 . . . . . . . . . 10 𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V
98a1i 11 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → ∀𝑥𝑉𝑦𝑊 (𝐹‘⟨𝑥, 𝑦⟩) ∈ V)
10 ne0i 4321 . . . . . . . . . 10 (𝐵𝑊𝑊 ≠ ∅)
1110adantl 481 . . . . . . . . 9 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → 𝑊 ≠ ∅)
126, 9, 11mpocurryd 8273 . . . . . . . 8 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹𝑧)) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
134, 12eqtrd 2771 . . . . . . 7 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
14133adant2 1131 . . . . . 6 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → curry 𝐹 = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
1514fveq1d 6883 . . . . 5 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
1615adantr 480 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴))
17 mptexg 7218 . . . . . 6 (𝑊𝑋 → (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V)
18 opeq1 4854 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1918fveq2d 6885 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹‘⟨𝑥, 𝑦⟩) = (𝐹‘⟨𝐴, 𝑦⟩))
2019mpteq2dv 5220 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
21 eqid 2736 . . . . . . 7 (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩))) = (𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
2220, 21fvmptg 6989 . . . . . 6 ((𝐴𝑉 ∧ (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) ∈ V) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2317, 22sylan2 593 . . . . 5 ((𝐴𝑉𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
24233ad2antl2 1187 . . . 4 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑥𝑉 ↦ (𝑦𝑊 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))‘𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2516, 24eqtrd 2771 . . 3 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → (curry 𝐹𝐴) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)))
2625fveq1d 6883 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵))
27 opeq2 4855 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2827fveq2d 6885 . . . . . 6 (𝑦 = 𝐵 → (𝐹‘⟨𝐴, 𝑦⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
29 eqid 2736 . . . . . 6 (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩)) = (𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))
30 fvex 6894 . . . . . 6 (𝐹‘⟨𝐴, 𝐵⟩) ∈ V
3128, 29, 30fvmpt 6991 . . . . 5 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐹‘⟨𝐴, 𝐵⟩))
32 df-ov 7413 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3331, 32eqtr4di 2789 . . . 4 (𝐵𝑊 → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
34333ad2ant3 1135 . . 3 ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3534adantr 480 . 2 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((𝑦𝑊 ↦ (𝐹‘⟨𝐴, 𝑦⟩))‘𝐵) = (𝐴𝐹𝐵))
3626, 35eqtrd 2771 1 (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴𝑉𝐵𝑊) ∧ 𝑊𝑋) → ((curry 𝐹𝐴)‘𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  c0 4313  cop 4612  cmpt 5206   × cxp 5657   Fn wfn 6531  cfv 6536  (class class class)co 7410  curry ccur 8269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-cur 8271
This theorem is referenced by:  unccur  37632  matunitlindflem1  37645  matunitlindflem2  37646
  Copyright terms: Public domain W3C validator