| Step | Hyp | Ref
| Expression |
| 1 | | dffn5 6948 |
. . . . . . . . . 10
⊢ (𝐹 Fn (𝑉 × 𝑊) ↔ 𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧))) |
| 2 | | cureq 37544 |
. . . . . . . . . 10
⊢ (𝐹 = (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧)) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧))) |
| 3 | 1, 2 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐹 Fn (𝑉 × 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧))) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵 ∈ 𝑊) → curry 𝐹 = curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧))) |
| 5 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) |
| 6 | 5 | mpompt 7530 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)) |
| 7 | | fvex 6900 |
. . . . . . . . . . 11
⊢ (𝐹‘〈𝑥, 𝑦〉) ∈ V |
| 8 | 7 | rgen2w 3055 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑊 (𝐹‘〈𝑥, 𝑦〉) ∈ V |
| 9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵 ∈ 𝑊) → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝐹‘〈𝑥, 𝑦〉) ∈ V) |
| 10 | | ne0i 4323 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝑊 ≠ ∅) |
| 11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵 ∈ 𝑊) → 𝑊 ≠ ∅) |
| 12 | 6, 9, 11 | mpocurryd 8277 |
. . . . . . . 8
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵 ∈ 𝑊) → curry (𝑧 ∈ (𝑉 × 𝑊) ↦ (𝐹‘𝑧)) = (𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))) |
| 13 | 4, 12 | eqtrd 2769 |
. . . . . . 7
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐵 ∈ 𝑊) → curry 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))) |
| 14 | 13 | 3adant2 1131 |
. . . . . 6
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → curry 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))) |
| 15 | 14 | fveq1d 6889 |
. . . . 5
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (curry 𝐹‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))‘𝐴)) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → (curry 𝐹‘𝐴) = ((𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))‘𝐴)) |
| 17 | | mptexg 7224 |
. . . . . 6
⊢ (𝑊 ∈ 𝑋 → (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉)) ∈ V) |
| 18 | | opeq1 4855 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) |
| 19 | 18 | fveq2d 6891 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝐹‘〈𝑥, 𝑦〉) = (𝐹‘〈𝐴, 𝑦〉)) |
| 20 | 19 | mpteq2dv 5226 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))) |
| 21 | | eqid 2734 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉))) = (𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉))) |
| 22 | 20, 21 | fvmptg 6995 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉)) ∈ V) → ((𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))‘𝐴) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))) |
| 23 | 17, 22 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑊 ∈ 𝑋) → ((𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))‘𝐴) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))) |
| 24 | 23 | 3ad2antl2 1186 |
. . . 4
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((𝑥 ∈ 𝑉 ↦ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝑥, 𝑦〉)))‘𝐴) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))) |
| 25 | 16, 24 | eqtrd 2769 |
. . 3
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))) |
| 26 | 25 | fveq1d 6889 |
. 2
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = ((𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))‘𝐵)) |
| 27 | | opeq2 4856 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 28 | 27 | fveq2d 6891 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐹‘〈𝐴, 𝑦〉) = (𝐹‘〈𝐴, 𝐵〉)) |
| 29 | | eqid 2734 |
. . . . . 6
⊢ (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉)) = (𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉)) |
| 30 | | fvex 6900 |
. . . . . 6
⊢ (𝐹‘〈𝐴, 𝐵〉) ∈ V |
| 31 | 28, 29, 30 | fvmpt 6997 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))‘𝐵) = (𝐹‘〈𝐴, 𝐵〉)) |
| 32 | | df-ov 7417 |
. . . . 5
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
| 33 | 31, 32 | eqtr4di 2787 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ((𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))‘𝐵) = (𝐴𝐹𝐵)) |
| 34 | 33 | 3ad2ant3 1135 |
. . 3
⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))‘𝐵) = (𝐴𝐹𝐵)) |
| 35 | 34 | adantr 480 |
. 2
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((𝑦 ∈ 𝑊 ↦ (𝐹‘〈𝐴, 𝑦〉))‘𝐵) = (𝐴𝐹𝐵)) |
| 36 | 26, 35 | eqtrd 2769 |
1
⊢ (((𝐹 Fn (𝑉 × 𝑊) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑊 ∈ 𝑋) → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) |