![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvntr | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvntr | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvpss 32314 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
3 | cvpss 32314 | . . 3 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) | |
4 | 3 | 3adant1 1129 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) |
5 | cvnbtwn 32315 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) | |
6 | 5 | 3com23 1125 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) |
7 | 6 | con2d 134 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
8 | 2, 4, 7 | syl2and 608 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ⊊ wpss 3964 class class class wbr 5148 Cℋ cch 30958 ⋖ℋ ccv 30993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cv 32308 |
This theorem is referenced by: atcv0eq 32408 |
Copyright terms: Public domain | W3C validator |