HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvntr Structured version   Visualization version   GIF version

Theorem cvntr 30633
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvntr ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))

Proof of Theorem cvntr
StepHypRef Expression
1 cvpss 30626 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
213adant3 1130 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵𝐴𝐵))
3 cvpss 30626 . . 3 ((𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
433adant1 1128 . 2 ((𝐴C𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
5 cvnbtwn 30627 . . . 4 ((𝐴C𝐶C𝐵C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
653com23 1124 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
76con2d 134 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 𝐶))
82, 4, 7syl2and 607 1 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wcel 2109  wpss 3892   class class class wbr 5078   C cch 29270   ccv 29305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-cv 30620
This theorem is referenced by:  atcv0eq  30720
  Copyright terms: Public domain W3C validator