HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvntr Structured version   Visualization version   GIF version

Theorem cvntr 32324
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvntr ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))

Proof of Theorem cvntr
StepHypRef Expression
1 cvpss 32317 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
213adant3 1132 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵𝐴𝐵))
3 cvpss 32317 . . 3 ((𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
433adant1 1130 . 2 ((𝐴C𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
5 cvnbtwn 32318 . . . 4 ((𝐴C𝐶C𝐵C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
653com23 1126 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
76con2d 134 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 𝐶))
82, 4, 7syl2and 607 1 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wpss 3977   class class class wbr 5166   C cch 30961   ccv 30996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cv 32311
This theorem is referenced by:  atcv0eq  32411
  Copyright terms: Public domain W3C validator