HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvntr Structured version   Visualization version   GIF version

Theorem cvntr 32258
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvntr ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))

Proof of Theorem cvntr
StepHypRef Expression
1 cvpss 32251 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
213adant3 1132 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵𝐴𝐵))
3 cvpss 32251 . . 3 ((𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
433adant1 1130 . 2 ((𝐴C𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
5 cvnbtwn 32252 . . . 4 ((𝐴C𝐶C𝐵C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
653com23 1126 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
76con2d 134 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 𝐶))
82, 4, 7syl2and 608 1 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2107  wpss 3934   class class class wbr 5125   C cch 30895   ccv 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-cv 32245
This theorem is referenced by:  atcv0eq  32345
  Copyright terms: Public domain W3C validator