Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvntr | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvntr | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvpss 30626 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
3 | cvpss 30626 | . . 3 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) | |
4 | 3 | 3adant1 1128 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) |
5 | cvnbtwn 30627 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) | |
6 | 5 | 3com23 1124 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) |
7 | 6 | con2d 134 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
8 | 2, 4, 7 | syl2and 607 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 ⊊ wpss 3892 class class class wbr 5078 Cℋ cch 29270 ⋖ℋ ccv 29305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cv 30620 |
This theorem is referenced by: atcv0eq 30720 |
Copyright terms: Public domain | W3C validator |