HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvntr Structured version   Visualization version   GIF version

Theorem cvntr 32321
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvntr ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))

Proof of Theorem cvntr
StepHypRef Expression
1 cvpss 32314 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
213adant3 1131 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵𝐴𝐵))
3 cvpss 32314 . . 3 ((𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
433adant1 1129 . 2 ((𝐴C𝐵C𝐶C ) → (𝐵 𝐶𝐵𝐶))
5 cvnbtwn 32315 . . . 4 ((𝐴C𝐶C𝐵C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
653com23 1125 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 → ¬ (𝐴𝐵𝐵𝐶)))
76con2d 134 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 𝐶))
82, 4, 7syl2and 608 1 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐵𝐵 𝐶) → ¬ 𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2106  wpss 3964   class class class wbr 5148   C cch 30958   ccv 30993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cv 32308
This theorem is referenced by:  atcv0eq  32408
  Copyright terms: Public domain W3C validator