![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvntr | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvntr | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvpss 32317 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
3 | cvpss 32317 | . . 3 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) | |
4 | 3 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⋖ℋ 𝐶 → 𝐵 ⊊ 𝐶)) |
5 | cvnbtwn 32318 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) | |
6 | 5 | 3com23 1126 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) |
7 | 6 | con2d 134 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
8 | 2, 4, 7 | syl2and 607 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊊ wpss 3977 class class class wbr 5166 Cℋ cch 30961 ⋖ℋ ccv 30996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cv 32311 |
This theorem is referenced by: atcv0eq 32411 |
Copyright terms: Public domain | W3C validator |