MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnncvsmulassdemo Structured version   Visualization version   GIF version

Theorem cnncvsmulassdemo 25079
Description: Derive the associative law for complex number multiplication mulass 11218 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnncvsmulassdemo ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem cnncvsmulassdemo
StepHypRef Expression
1 eqid 2727 . . . 4 (ringLMod‘ℂfld) = (ringLMod‘ℂfld)
21cncvs 25059 . . 3 (ringLMod‘ℂfld) ∈ ℂVec
3 id 22 . . . 4 ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂVec)
43cvsclm 25040 . . 3 ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂMod)
52, 4ax-mp 5 . 2 (ringLMod‘ℂfld) ∈ ℂMod
61cnrbas 25056 . . . 4 (Base‘(ringLMod‘ℂfld)) = ℂ
76eqcomi 2736 . . 3 ℂ = (Base‘(ringLMod‘ℂfld))
8 cnfldex 21269 . . . 4 fld ∈ V
9 rlmsca 21080 . . . 4 (ℂfld ∈ V → ℂfld = (Scalar‘(ringLMod‘ℂfld)))
108, 9ax-mp 5 . . 3 fld = (Scalar‘(ringLMod‘ℂfld))
11 cnfldmul 21274 . . . 4 · = (.r‘ℂfld)
12 rlmvsca 21082 . . . 4 (.r‘ℂfld) = ( ·𝑠 ‘(ringLMod‘ℂfld))
1311, 12eqtri 2755 . . 3 · = ( ·𝑠 ‘(ringLMod‘ℂfld))
14 cnfldbas 21270 . . . . 5 ℂ = (Base‘ℂfld)
1514eqcomi 2736 . . . 4 (Base‘ℂfld) = ℂ
1615eqcomi 2736 . . 3 ℂ = (Base‘ℂfld)
177, 10, 13, 16clmvsass 25003 . 2 (((ringLMod‘ℂfld) ∈ ℂMod ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
185, 17mpan 689 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3469  cfv 6542  (class class class)co 7414  cc 11128   · cmul 11135  Basecbs 17171  .rcmulr 17225  Scalarcsca 17227   ·𝑠 cvsca 17228  ringLModcrglmod 21046  fldccnfld 21266  ℂModcclm 24976  ℂVecccvs 25037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-addf 11209  ax-mulf 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-subg 19069  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-subrng 20472  df-subrg 20497  df-drng 20615  df-lmod 20734  df-lvec 20977  df-sra 21047  df-rgmod 21048  df-cnfld 21267  df-clm 24977  df-cvs 25038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator