![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnncvsmulassdemo | Structured version Visualization version GIF version |
Description: Derive the associative law for complex number multiplication mulass 11226 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnncvsmulassdemo | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 ⊢ (ringLMod‘ℂfld) = (ringLMod‘ℂfld) | |
2 | 1 | cncvs 25102 | . . 3 ⊢ (ringLMod‘ℂfld) ∈ ℂVec |
3 | id 22 | . . . 4 ⊢ ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂVec) | |
4 | 3 | cvsclm 25083 | . . 3 ⊢ ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂMod) |
5 | 2, 4 | ax-mp 5 | . 2 ⊢ (ringLMod‘ℂfld) ∈ ℂMod |
6 | 1 | cnrbas 25099 | . . . 4 ⊢ (Base‘(ringLMod‘ℂfld)) = ℂ |
7 | 6 | eqcomi 2734 | . . 3 ⊢ ℂ = (Base‘(ringLMod‘ℂfld)) |
8 | cnfldex 21286 | . . . 4 ⊢ ℂfld ∈ V | |
9 | rlmsca 21095 | . . . 4 ⊢ (ℂfld ∈ V → ℂfld = (Scalar‘(ringLMod‘ℂfld))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ℂfld = (Scalar‘(ringLMod‘ℂfld)) |
11 | cnfldmul 21291 | . . . 4 ⊢ · = (.r‘ℂfld) | |
12 | rlmvsca 21097 | . . . 4 ⊢ (.r‘ℂfld) = ( ·𝑠 ‘(ringLMod‘ℂfld)) | |
13 | 11, 12 | eqtri 2753 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘ℂfld)) |
14 | cnfldbas 21287 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
15 | 14 | eqcomi 2734 | . . . 4 ⊢ (Base‘ℂfld) = ℂ |
16 | 15 | eqcomi 2734 | . . 3 ⊢ ℂ = (Base‘ℂfld) |
17 | 7, 10, 13, 16 | clmvsass 25046 | . 2 ⊢ (((ringLMod‘ℂfld) ∈ ℂMod ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
18 | 5, 17 | mpan 688 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ‘cfv 6547 (class class class)co 7417 ℂcc 11136 · cmul 11143 Basecbs 17179 .rcmulr 17233 Scalarcsca 17235 ·𝑠 cvsca 17236 ringLModcrglmod 21061 ℂfldccnfld 21283 ℂModcclm 25019 ℂVecccvs 25080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-subg 19082 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-subrng 20487 df-subrg 20512 df-drng 20630 df-lmod 20749 df-lvec 20992 df-sra 21062 df-rgmod 21063 df-cnfld 21284 df-clm 25020 df-cvs 25081 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |