MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnncvsmulassdemo Structured version   Visualization version   GIF version

Theorem cnncvsmulassdemo 23340
Description: Derive the associative law for complex number multiplication mulass 10347 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnncvsmulassdemo ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem cnncvsmulassdemo
StepHypRef Expression
1 eqid 2825 . . . 4 (ringLMod‘ℂfld) = (ringLMod‘ℂfld)
21cncvs 23321 . . 3 (ringLMod‘ℂfld) ∈ ℂVec
3 id 22 . . . 4 ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂVec)
43cvsclm 23302 . . 3 ((ringLMod‘ℂfld) ∈ ℂVec → (ringLMod‘ℂfld) ∈ ℂMod)
52, 4ax-mp 5 . 2 (ringLMod‘ℂfld) ∈ ℂMod
61cnrbas 23318 . . . 4 (Base‘(ringLMod‘ℂfld)) = ℂ
76eqcomi 2834 . . 3 ℂ = (Base‘(ringLMod‘ℂfld))
8 cnfldex 20116 . . . 4 fld ∈ V
9 rlmsca 19568 . . . 4 (ℂfld ∈ V → ℂfld = (Scalar‘(ringLMod‘ℂfld)))
108, 9ax-mp 5 . . 3 fld = (Scalar‘(ringLMod‘ℂfld))
11 cnfldmul 20119 . . . 4 · = (.r‘ℂfld)
12 rlmvsca 19570 . . . 4 (.r‘ℂfld) = ( ·𝑠 ‘(ringLMod‘ℂfld))
1311, 12eqtri 2849 . . 3 · = ( ·𝑠 ‘(ringLMod‘ℂfld))
14 cnfldbas 20117 . . . . 5 ℂ = (Base‘ℂfld)
1514eqcomi 2834 . . . 4 (Base‘ℂfld) = ℂ
1615eqcomi 2834 . . 3 ℂ = (Base‘ℂfld)
177, 10, 13, 16clmvsass 23265 . 2 (((ringLMod‘ℂfld) ∈ ℂMod ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
185, 17mpan 681 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  Vcvv 3414  cfv 6127  (class class class)co 6910  cc 10257   · cmul 10264  Basecbs 16229  .rcmulr 16313  Scalarcsca 16315   ·𝑠 cvsca 16316  ringLModcrglmod 19537  fldccnfld 20113  ℂModcclm 23238  ℂVecccvs 23299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-subg 17949  df-cmn 18555  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-subrg 19141  df-lmod 19228  df-lvec 19469  df-sra 19540  df-rgmod 19541  df-cnfld 20114  df-clm 23239  df-cvs 23300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator