| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version | ||
| Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
| cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
| cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cvsdiveqd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| cvsdiveqd.3 | ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) |
| Ref | Expression |
|---|---|
| cvsdiveqd | ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.3 | . . 3 ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) | |
| 2 | 1 | oveq2d 7371 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 4 | 3 | cvsclm 25063 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 5, 6 | clmsscn 25016 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 9 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3932 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 11 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 12 | 8, 11 | sseldd 3932 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | cvsdiveqd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 14 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 15 | 10, 12, 13, 14 | divcan6d 11926 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1) |
| 16 | 15 | oveq1d 7370 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌)) |
| 17 | 5, 6 | cvsdivcl 25070 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾) |
| 18 | 3, 9, 11, 14, 17 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ 𝐾) |
| 19 | 5, 6 | cvsdivcl 25070 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
| 20 | 3, 11, 9, 13, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ 𝐾) |
| 21 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 22 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 23 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | 22, 5, 23, 6 | clmvsass 25026 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 25 | 4, 18, 20, 21, 24 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 26 | 22, 23 | clmvs1 25030 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉) → (1 · 𝑌) = 𝑌) |
| 27 | 4, 21, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 · 𝑌) = 𝑌) |
| 28 | 16, 25, 27 | 3eqtr3d 2776 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌) |
| 29 | 2, 28 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 0cc0 11016 1c1 11017 · cmul 11021 / cdiv 11784 Basecbs 17130 Scalarcsca 17174 ·𝑠 cvsca 17175 ℂModcclm 24999 ℂVecccvs 25060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-subg 19046 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-subrg 20495 df-drng 20656 df-lmod 20805 df-lvec 21047 df-cnfld 21302 df-clm 25000 df-cvs 25061 |
| This theorem is referenced by: ttgcontlem1 28873 |
| Copyright terms: Public domain | W3C validator |