MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiveqd Structured version   Visualization version   GIF version

Theorem cvsdiveqd 25055
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsdiveqd.2 (𝜑𝐵 ≠ 0)
cvsdiveqd.3 (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))
Assertion
Ref Expression
cvsdiveqd (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)

Proof of Theorem cvsdiveqd
StepHypRef Expression
1 cvsdiveqd.3 . . 3 (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))
21oveq2d 7357 . 2 (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 25046 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 24999 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
108, 9sseldd 3933 . . . . 5 (𝜑𝐵 ∈ ℂ)
11 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
128, 11sseldd 3933 . . . . 5 (𝜑𝐴 ∈ ℂ)
13 cvsdiveqd.2 . . . . 5 (𝜑𝐵 ≠ 0)
14 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1510, 12, 13, 14divcan6d 11908 . . . 4 (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1)
1615oveq1d 7356 . . 3 (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌))
175, 6cvsdivcl 25053 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐵𝐾𝐴𝐾𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾)
183, 9, 11, 14, 17syl13anc 1374 . . . 4 (𝜑 → (𝐵 / 𝐴) ∈ 𝐾)
195, 6cvsdivcl 25053 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
203, 11, 9, 13, 19syl13anc 1374 . . . 4 (𝜑 → (𝐴 / 𝐵) ∈ 𝐾)
21 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
22 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
23 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2422, 5, 23, 6clmvsass 25009 . . . 4 ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾𝑌𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
254, 18, 20, 21, 24syl13anc 1374 . . 3 (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
2622, 23clmvs1 25013 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑌𝑉) → (1 · 𝑌) = 𝑌)
274, 21, 26syl2anc 584 . . 3 (𝜑 → (1 · 𝑌) = 𝑌)
2816, 25, 273eqtr3d 2773 . 2 (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌)
292, 28eqtrd 2765 1 (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wne 2926  wss 3900  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   · cmul 11003   / cdiv 11766  Basecbs 17112  Scalarcsca 17156   ·𝑠 cvsca 17157  ℂModcclm 24982  ℂVecccvs 25043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lvec 21030  df-cnfld 21285  df-clm 24983  df-cvs 25044
This theorem is referenced by:  ttgcontlem1  28856
  Copyright terms: Public domain W3C validator