Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version |
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cvsdiveqd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
cvsdiveqd.3 | ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) |
Ref | Expression |
---|---|
cvsdiveqd | ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsdiveqd.3 | . . 3 ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) | |
2 | 1 | oveq2d 7271 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
4 | 3 | cvsclm 24195 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | clmsscn 24148 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
9 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
10 | 8, 9 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
11 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
12 | 8, 11 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | cvsdiveqd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
14 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
15 | 10, 12, 13, 14 | divcan6d 11700 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1) |
16 | 15 | oveq1d 7270 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌)) |
17 | 5, 6 | cvsdivcl 24202 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾) |
18 | 3, 9, 11, 14, 17 | syl13anc 1370 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ 𝐾) |
19 | 5, 6 | cvsdivcl 24202 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
20 | 3, 11, 9, 13, 19 | syl13anc 1370 | . . . 4 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ 𝐾) |
21 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
22 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
23 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
24 | 22, 5, 23, 6 | clmvsass 24158 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
25 | 4, 18, 20, 21, 24 | syl13anc 1370 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
26 | 22, 23 | clmvs1 24162 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉) → (1 · 𝑌) = 𝑌) |
27 | 4, 21, 26 | syl2anc 583 | . . 3 ⊢ (𝜑 → (1 · 𝑌) = 𝑌) |
28 | 16, 25, 27 | 3eqtr3d 2786 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌) |
29 | 2, 28 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 / cdiv 11562 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 ℂModcclm 24131 ℂVecccvs 24192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lvec 20280 df-cnfld 20511 df-clm 24132 df-cvs 24193 |
This theorem is referenced by: ttgcontlem1 27155 |
Copyright terms: Public domain | W3C validator |