| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version | ||
| Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
| cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
| cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cvsdiveqd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| cvsdiveqd.3 | ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) |
| Ref | Expression |
|---|---|
| cvsdiveqd | ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.3 | . . 3 ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) | |
| 2 | 1 | oveq2d 7369 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 4 | 3 | cvsclm 25042 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 5, 6 | clmsscn 24995 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 9 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3938 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 11 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 12 | 8, 11 | sseldd 3938 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | cvsdiveqd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 14 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 15 | 10, 12, 13, 14 | divcan6d 11937 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1) |
| 16 | 15 | oveq1d 7368 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌)) |
| 17 | 5, 6 | cvsdivcl 25049 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾) |
| 18 | 3, 9, 11, 14, 17 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ 𝐾) |
| 19 | 5, 6 | cvsdivcl 25049 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
| 20 | 3, 11, 9, 13, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ 𝐾) |
| 21 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 22 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 23 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | 22, 5, 23, 6 | clmvsass 25005 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 25 | 4, 18, 20, 21, 24 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 26 | 22, 23 | clmvs1 25009 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉) → (1 · 𝑌) = 𝑌) |
| 27 | 4, 21, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 · 𝑌) = 𝑌) |
| 28 | 16, 25, 27 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌) |
| 29 | 2, 28 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11795 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 ℂModcclm 24978 ℂVecccvs 25039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lvec 21025 df-cnfld 21280 df-clm 24979 df-cvs 25040 |
| This theorem is referenced by: ttgcontlem1 28848 |
| Copyright terms: Public domain | W3C validator |