MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiveqd Structured version   Visualization version   GIF version

Theorem cvsdiveqd 25169
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsdiveqd.2 (𝜑𝐵 ≠ 0)
cvsdiveqd.3 (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))
Assertion
Ref Expression
cvsdiveqd (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)

Proof of Theorem cvsdiveqd
StepHypRef Expression
1 cvsdiveqd.3 . . 3 (𝜑𝑋 = ((𝐴 / 𝐵) · 𝑌))
21oveq2d 7448 . 2 (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 25160 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 25113 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
108, 9sseldd 3983 . . . . 5 (𝜑𝐵 ∈ ℂ)
11 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
128, 11sseldd 3983 . . . . 5 (𝜑𝐴 ∈ ℂ)
13 cvsdiveqd.2 . . . . 5 (𝜑𝐵 ≠ 0)
14 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1510, 12, 13, 14divcan6d 12063 . . . 4 (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1)
1615oveq1d 7447 . . 3 (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌))
175, 6cvsdivcl 25167 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐵𝐾𝐴𝐾𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾)
183, 9, 11, 14, 17syl13anc 1373 . . . 4 (𝜑 → (𝐵 / 𝐴) ∈ 𝐾)
195, 6cvsdivcl 25167 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾)
203, 11, 9, 13, 19syl13anc 1373 . . . 4 (𝜑 → (𝐴 / 𝐵) ∈ 𝐾)
21 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
22 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
23 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2422, 5, 23, 6clmvsass 25123 . . . 4 ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾𝑌𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
254, 18, 20, 21, 24syl13anc 1373 . . 3 (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)))
2622, 23clmvs1 25127 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑌𝑉) → (1 · 𝑌) = 𝑌)
274, 21, 26syl2anc 584 . . 3 (𝜑 → (1 · 𝑌) = 𝑌)
2816, 25, 273eqtr3d 2784 . 2 (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌)
292, 28eqtrd 2776 1 (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2939  wss 3950  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   · cmul 11161   / cdiv 11921  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  ℂModcclm 25096  ℂVecccvs 25157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-subg 19142  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-subrg 20571  df-drng 20732  df-lmod 20861  df-lvec 21103  df-cnfld 21366  df-clm 25097  df-cvs 25158
This theorem is referenced by:  ttgcontlem1  28900
  Copyright terms: Public domain W3C validator