| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version | ||
| Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
| cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
| cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cvsdiveqd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| cvsdiveqd.3 | ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) |
| Ref | Expression |
|---|---|
| cvsdiveqd | ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsdiveqd.3 | . . 3 ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) | |
| 2 | 1 | oveq2d 7406 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 4 | 3 | cvsclm 25033 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 5, 6 | clmsscn 24986 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 9 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3950 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 11 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 12 | 8, 11 | sseldd 3950 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | cvsdiveqd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 14 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 15 | 10, 12, 13, 14 | divcan6d 11984 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1) |
| 16 | 15 | oveq1d 7405 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌)) |
| 17 | 5, 6 | cvsdivcl 25040 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾) |
| 18 | 3, 9, 11, 14, 17 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ 𝐾) |
| 19 | 5, 6 | cvsdivcl 25040 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
| 20 | 3, 11, 9, 13, 19 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ 𝐾) |
| 21 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 22 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 23 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | 22, 5, 23, 6 | clmvsass 24996 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 25 | 4, 18, 20, 21, 24 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
| 26 | 22, 23 | clmvs1 25000 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉) → (1 · 𝑌) = 𝑌) |
| 27 | 4, 21, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 · 𝑌) = 𝑌) |
| 28 | 16, 25, 27 | 3eqtr3d 2773 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌) |
| 29 | 2, 28 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 ℂModcclm 24969 ℂVecccvs 25030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrg 20486 df-drng 20647 df-lmod 20775 df-lvec 21017 df-cnfld 21272 df-clm 24970 df-cvs 25031 |
| This theorem is referenced by: ttgcontlem1 28819 |
| Copyright terms: Public domain | W3C validator |