![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version |
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiveqd.v | β’ π = (Baseβπ) |
cvsdiveqd.t | β’ Β· = ( Β·π βπ) |
cvsdiveqd.f | β’ πΉ = (Scalarβπ) |
cvsdiveqd.k | β’ πΎ = (BaseβπΉ) |
cvsdiveqd.w | β’ (π β π β βVec) |
cvsdiveqd.a | β’ (π β π΄ β πΎ) |
cvsdiveqd.b | β’ (π β π΅ β πΎ) |
cvsdiveqd.x | β’ (π β π β π) |
cvsdiveqd.y | β’ (π β π β π) |
cvsdiveqd.1 | β’ (π β π΄ β 0) |
cvsdiveqd.2 | β’ (π β π΅ β 0) |
cvsdiveqd.3 | β’ (π β π = ((π΄ / π΅) Β· π)) |
Ref | Expression |
---|---|
cvsdiveqd | β’ (π β ((π΅ / π΄) Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsdiveqd.3 | . . 3 β’ (π β π = ((π΄ / π΅) Β· π)) | |
2 | 1 | oveq2d 7417 | . 2 β’ (π β ((π΅ / π΄) Β· π) = ((π΅ / π΄) Β· ((π΄ / π΅) Β· π))) |
3 | cvsdiveqd.w | . . . . . . . 8 β’ (π β π β βVec) | |
4 | 3 | cvsclm 24974 | . . . . . . 7 β’ (π β π β βMod) |
5 | cvsdiveqd.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
6 | cvsdiveqd.k | . . . . . . . 8 β’ πΎ = (BaseβπΉ) | |
7 | 5, 6 | clmsscn 24927 | . . . . . . 7 β’ (π β βMod β πΎ β β) |
8 | 4, 7 | syl 17 | . . . . . 6 β’ (π β πΎ β β) |
9 | cvsdiveqd.b | . . . . . 6 β’ (π β π΅ β πΎ) | |
10 | 8, 9 | sseldd 3975 | . . . . 5 β’ (π β π΅ β β) |
11 | cvsdiveqd.a | . . . . . 6 β’ (π β π΄ β πΎ) | |
12 | 8, 11 | sseldd 3975 | . . . . 5 β’ (π β π΄ β β) |
13 | cvsdiveqd.2 | . . . . 5 β’ (π β π΅ β 0) | |
14 | cvsdiveqd.1 | . . . . 5 β’ (π β π΄ β 0) | |
15 | 10, 12, 13, 14 | divcan6d 12005 | . . . 4 β’ (π β ((π΅ / π΄) Β· (π΄ / π΅)) = 1) |
16 | 15 | oveq1d 7416 | . . 3 β’ (π β (((π΅ / π΄) Β· (π΄ / π΅)) Β· π) = (1 Β· π)) |
17 | 5, 6 | cvsdivcl 24981 | . . . . 5 β’ ((π β βVec β§ (π΅ β πΎ β§ π΄ β πΎ β§ π΄ β 0)) β (π΅ / π΄) β πΎ) |
18 | 3, 9, 11, 14, 17 | syl13anc 1369 | . . . 4 β’ (π β (π΅ / π΄) β πΎ) |
19 | 5, 6 | cvsdivcl 24981 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) β πΎ) |
20 | 3, 11, 9, 13, 19 | syl13anc 1369 | . . . 4 β’ (π β (π΄ / π΅) β πΎ) |
21 | cvsdiveqd.y | . . . 4 β’ (π β π β π) | |
22 | cvsdiveqd.v | . . . . 5 β’ π = (Baseβπ) | |
23 | cvsdiveqd.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
24 | 22, 5, 23, 6 | clmvsass 24937 | . . . 4 β’ ((π β βMod β§ ((π΅ / π΄) β πΎ β§ (π΄ / π΅) β πΎ β§ π β π)) β (((π΅ / π΄) Β· (π΄ / π΅)) Β· π) = ((π΅ / π΄) Β· ((π΄ / π΅) Β· π))) |
25 | 4, 18, 20, 21, 24 | syl13anc 1369 | . . 3 β’ (π β (((π΅ / π΄) Β· (π΄ / π΅)) Β· π) = ((π΅ / π΄) Β· ((π΄ / π΅) Β· π))) |
26 | 22, 23 | clmvs1 24941 | . . . 4 β’ ((π β βMod β§ π β π) β (1 Β· π) = π) |
27 | 4, 21, 26 | syl2anc 583 | . . 3 β’ (π β (1 Β· π) = π) |
28 | 16, 25, 27 | 3eqtr3d 2772 | . 2 β’ (π β ((π΅ / π΄) Β· ((π΄ / π΅) Β· π)) = π) |
29 | 2, 28 | eqtrd 2764 | 1 β’ (π β ((π΅ / π΄) Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2932 β wss 3940 βcfv 6533 (class class class)co 7401 βcc 11103 0cc0 11105 1c1 11106 Β· cmul 11110 / cdiv 11867 Basecbs 17142 Scalarcsca 17198 Β·π cvsca 17199 βModcclm 24910 βVecccvs 24971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-minusg 18856 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-subrg 20460 df-drng 20578 df-lmod 20697 df-lvec 20940 df-cnfld 21228 df-clm 24911 df-cvs 24972 |
This theorem is referenced by: ttgcontlem1 28577 |
Copyright terms: Public domain | W3C validator |