MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgcontlem1 Structured version   Visualization version   GIF version

Theorem ttgcontlem1 27252
Description: Lemma for % ttgcont . (Contributed by Thierry Arnoux, 24-May-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgbtwnid.r 𝑅 = (Base‘(Scalar‘𝐻))
ttgbtwnid.2 (𝜑 → (0[,]1) ⊆ 𝑅)
ttgitvval.p + = (+g𝐻)
ttgcontlem1.h (𝜑𝐻 ∈ ℂVec)
ttgcontlem1.a (𝜑𝐴𝑃)
ttgcontlem1.n (𝜑𝑁𝑃)
ttgcontlem1.o (𝜑𝑀 ≠ 0)
ttgcontlem1.p (𝜑𝐾 ≠ 0)
ttgcontlem1.q (𝜑𝐾 ≠ 1)
ttgcontlem1.r (𝜑𝐿𝑀)
ttgcontlem1.s (𝜑𝐿 ≤ (𝑀 / 𝐾))
ttgcontlem1.l (𝜑𝐿 ∈ (0[,]1))
ttgcontlem1.k (𝜑𝐾 ∈ (0[,]1))
ttgcontlem1.m (𝜑𝑀 ∈ (0[,]𝐿))
ttgcontlem1.y (𝜑 → (𝑋 𝐴) = (𝐾 · (𝑌 𝐴)))
ttgcontlem1.x (𝜑 → (𝑋 𝐴) = (𝑀 · (𝑁 𝐴)))
ttgcontlem1.b (𝜑𝐵 = (𝐴 + (𝐿 · (𝑁 𝐴))))
Assertion
Ref Expression
ttgcontlem1 (𝜑𝐵 ∈ (𝑋𝐼𝑌))

Proof of Theorem ttgcontlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 unitssre 13231 . . . . . . . 8 (0[,]1) ⊆ ℝ
2 ttgcontlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0[,]1))
31, 2sselid 3919 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
4 ttgcontlem1.k . . . . . . . 8 (𝜑𝐾 ∈ (0[,]1))
51, 4sselid 3919 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
63, 5remulcld 11005 . . . . . 6 (𝜑 → (𝐿 · 𝐾) ∈ ℝ)
7 0re 10977 . . . . . . . . 9 0 ∈ ℝ
8 iccssre 13161 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0[,]𝐿) ⊆ ℝ)
97, 3, 8sylancr 587 . . . . . . . 8 (𝜑 → (0[,]𝐿) ⊆ ℝ)
10 ttgcontlem1.m . . . . . . . 8 (𝜑𝑀 ∈ (0[,]𝐿))
119, 10sseldd 3922 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1211, 5remulcld 11005 . . . . . 6 (𝜑 → (𝑀 · 𝐾) ∈ ℝ)
136, 12resubcld 11403 . . . . 5 (𝜑 → ((𝐿 · 𝐾) − (𝑀 · 𝐾)) ∈ ℝ)
14 1red 10976 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
1511, 14remulcld 11005 . . . . . 6 (𝜑 → (𝑀 · 1) ∈ ℝ)
1615, 12resubcld 11403 . . . . 5 (𝜑 → ((𝑀 · 1) − (𝑀 · 𝐾)) ∈ ℝ)
1711recnd 11003 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
18 1cnd 10970 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
195recnd 11003 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
2017, 18, 19subdid 11431 . . . . . 6 (𝜑 → (𝑀 · (1 − 𝐾)) = ((𝑀 · 1) − (𝑀 · 𝐾)))
2118, 19subcld 11332 . . . . . . 7 (𝜑 → (1 − 𝐾) ∈ ℂ)
22 ttgcontlem1.o . . . . . . 7 (𝜑𝑀 ≠ 0)
23 ttgcontlem1.q . . . . . . . . 9 (𝜑𝐾 ≠ 1)
2423necomd 2999 . . . . . . . 8 (𝜑 → 1 ≠ 𝐾)
2518, 19, 24subne0d 11341 . . . . . . 7 (𝜑 → (1 − 𝐾) ≠ 0)
2617, 21, 22, 25mulne0d 11627 . . . . . 6 (𝜑 → (𝑀 · (1 − 𝐾)) ≠ 0)
2720, 26eqnetrrd 3012 . . . . 5 (𝜑 → ((𝑀 · 1) − (𝑀 · 𝐾)) ≠ 0)
2813, 16, 27redivcld 11803 . . . 4 (𝜑 → (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∈ ℝ)
29 0xr 11022 . . . . . . . . . 10 0 ∈ ℝ*
303rexrd 11025 . . . . . . . . . 10 (𝜑𝐿 ∈ ℝ*)
31 iccgelb 13135 . . . . . . . . . 10 ((0 ∈ ℝ*𝐿 ∈ ℝ*𝑀 ∈ (0[,]𝐿)) → 0 ≤ 𝑀)
3229, 30, 10, 31mp3an2i 1465 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
3311, 32, 22ne0gt0d 11112 . . . . . . . 8 (𝜑 → 0 < 𝑀)
3411, 33elrpd 12769 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
3514rexrd 11025 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
36 iccleub 13134 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝐾 ∈ (0[,]1)) → 𝐾 ≤ 1)
3729, 35, 4, 36mp3an2i 1465 . . . . . . . . 9 (𝜑𝐾 ≤ 1)
385, 14, 37, 24leneltd 11129 . . . . . . . 8 (𝜑𝐾 < 1)
39 difrp 12768 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 ↔ (1 − 𝐾) ∈ ℝ+))
405, 14, 39syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾 < 1 ↔ (1 − 𝐾) ∈ ℝ+))
4138, 40mpbid 231 . . . . . . 7 (𝜑 → (1 − 𝐾) ∈ ℝ+)
4234, 41rpmulcld 12788 . . . . . 6 (𝜑 → (𝑀 · (1 − 𝐾)) ∈ ℝ+)
4320, 42eqeltrrd 2840 . . . . 5 (𝜑 → ((𝑀 · 1) − (𝑀 · 𝐾)) ∈ ℝ+)
443, 11resubcld 11403 . . . . . . 7 (𝜑 → (𝐿𝑀) ∈ ℝ)
45 iccleub 13134 . . . . . . . . 9 ((0 ∈ ℝ*𝐿 ∈ ℝ*𝑀 ∈ (0[,]𝐿)) → 𝑀𝐿)
4629, 30, 10, 45mp3an2i 1465 . . . . . . . 8 (𝜑𝑀𝐿)
473, 11subge0d 11565 . . . . . . . 8 (𝜑 → (0 ≤ (𝐿𝑀) ↔ 𝑀𝐿))
4846, 47mpbird 256 . . . . . . 7 (𝜑 → 0 ≤ (𝐿𝑀))
49 iccgelb 13135 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*𝐾 ∈ (0[,]1)) → 0 ≤ 𝐾)
5029, 35, 4, 49mp3an2i 1465 . . . . . . 7 (𝜑 → 0 ≤ 𝐾)
5144, 5, 48, 50mulge0d 11552 . . . . . 6 (𝜑 → 0 ≤ ((𝐿𝑀) · 𝐾))
523recnd 11003 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
5352, 17, 19subdird 11432 . . . . . 6 (𝜑 → ((𝐿𝑀) · 𝐾) = ((𝐿 · 𝐾) − (𝑀 · 𝐾)))
5451, 53breqtrd 5100 . . . . 5 (𝜑 → 0 ≤ ((𝐿 · 𝐾) − (𝑀 · 𝐾)))
5513, 43, 54divge0d 12812 . . . 4 (𝜑 → 0 ≤ (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))))
56 ttgcontlem1.s . . . . . . . . 9 (𝜑𝐿 ≤ (𝑀 / 𝐾))
57 ttgcontlem1.p . . . . . . . . . . . 12 (𝜑𝐾 ≠ 0)
585, 50, 57ne0gt0d 11112 . . . . . . . . . . 11 (𝜑 → 0 < 𝐾)
595, 58elrpd 12769 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
603, 11, 59lemuldivd 12821 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐾) ≤ 𝑀𝐿 ≤ (𝑀 / 𝐾)))
6156, 60mpbird 256 . . . . . . . 8 (𝜑 → (𝐿 · 𝐾) ≤ 𝑀)
6217mulid1d 10992 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
6361, 62breqtrrd 5102 . . . . . . 7 (𝜑 → (𝐿 · 𝐾) ≤ (𝑀 · 1))
646, 15, 12, 63lesub1dd 11591 . . . . . 6 (𝜑 → ((𝐿 · 𝐾) − (𝑀 · 𝐾)) ≤ ((𝑀 · 1) − (𝑀 · 𝐾)))
6517, 18mulcld 10995 . . . . . . . 8 (𝜑 → (𝑀 · 1) ∈ ℂ)
6617, 19mulcld 10995 . . . . . . . 8 (𝜑 → (𝑀 · 𝐾) ∈ ℂ)
6765, 66subcld 11332 . . . . . . 7 (𝜑 → ((𝑀 · 1) − (𝑀 · 𝐾)) ∈ ℂ)
6867mulid1d 10992 . . . . . 6 (𝜑 → (((𝑀 · 1) − (𝑀 · 𝐾)) · 1) = ((𝑀 · 1) − (𝑀 · 𝐾)))
6964, 68breqtrrd 5102 . . . . 5 (𝜑 → ((𝐿 · 𝐾) − (𝑀 · 𝐾)) ≤ (((𝑀 · 1) − (𝑀 · 𝐾)) · 1))
7013, 14, 43ledivmuld 12825 . . . . 5 (𝜑 → ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ≤ 1 ↔ ((𝐿 · 𝐾) − (𝑀 · 𝐾)) ≤ (((𝑀 · 1) − (𝑀 · 𝐾)) · 1)))
7169, 70mpbird 256 . . . 4 (𝜑 → (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ≤ 1)
72 elicc01 13198 . . . 4 ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∈ (0[,]1) ↔ ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∈ ℝ ∧ 0 ≤ (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∧ (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ≤ 1))
7328, 55, 71, 72syl3anbrc 1342 . . 3 (𝜑 → (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∈ (0[,]1))
74 ttgcontlem1.h . . . . . 6 (𝜑𝐻 ∈ ℂVec)
7574cvsclm 24289 . . . . 5 (𝜑𝐻 ∈ ℂMod)
76 ttgbtwnid.2 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ 𝑅)
7776, 2sseldd 3922 . . . . . . 7 (𝜑𝐿𝑅)
78 0elunit 13201 . . . . . . . . . 10 0 ∈ (0[,]1)
79 iccss2 13150 . . . . . . . . . 10 ((0 ∈ (0[,]1) ∧ 𝐿 ∈ (0[,]1)) → (0[,]𝐿) ⊆ (0[,]1))
8078, 2, 79sylancr 587 . . . . . . . . 9 (𝜑 → (0[,]𝐿) ⊆ (0[,]1))
8180, 76sstrd 3931 . . . . . . . 8 (𝜑 → (0[,]𝐿) ⊆ 𝑅)
8281, 10sseldd 3922 . . . . . . 7 (𝜑𝑀𝑅)
83 eqid 2738 . . . . . . . 8 (Scalar‘𝐻) = (Scalar‘𝐻)
84 ttgbtwnid.r . . . . . . . 8 𝑅 = (Base‘(Scalar‘𝐻))
8583, 84clmsubcl 24249 . . . . . . 7 ((𝐻 ∈ ℂMod ∧ 𝐿𝑅𝑀𝑅) → (𝐿𝑀) ∈ 𝑅)
8675, 77, 82, 85syl3anc 1370 . . . . . 6 (𝜑 → (𝐿𝑀) ∈ 𝑅)
8783, 84cvsdivcl 24296 . . . . . 6 ((𝐻 ∈ ℂVec ∧ ((𝐿𝑀) ∈ 𝑅𝑀𝑅𝑀 ≠ 0)) → ((𝐿𝑀) / 𝑀) ∈ 𝑅)
8874, 86, 82, 22, 87syl13anc 1371 . . . . 5 (𝜑 → ((𝐿𝑀) / 𝑀) ∈ 𝑅)
8976, 4sseldd 3922 . . . . . 6 (𝜑𝐾𝑅)
90 1elunit 13202 . . . . . . . . 9 1 ∈ (0[,]1)
9190a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ (0[,]1))
9276, 91sseldd 3922 . . . . . . 7 (𝜑 → 1 ∈ 𝑅)
9383, 84clmsubcl 24249 . . . . . . 7 ((𝐻 ∈ ℂMod ∧ 1 ∈ 𝑅𝐾𝑅) → (1 − 𝐾) ∈ 𝑅)
9475, 92, 89, 93syl3anc 1370 . . . . . 6 (𝜑 → (1 − 𝐾) ∈ 𝑅)
9583, 84cvsdivcl 24296 . . . . . 6 ((𝐻 ∈ ℂVec ∧ (𝐾𝑅 ∧ (1 − 𝐾) ∈ 𝑅 ∧ (1 − 𝐾) ≠ 0)) → (𝐾 / (1 − 𝐾)) ∈ 𝑅)
9674, 89, 94, 25, 95syl13anc 1371 . . . . 5 (𝜑 → (𝐾 / (1 − 𝐾)) ∈ 𝑅)
97 clmgrp 24231 . . . . . . 7 (𝐻 ∈ ℂMod → 𝐻 ∈ Grp)
9875, 97syl 17 . . . . . 6 (𝜑𝐻 ∈ Grp)
99 ttgelitv.y . . . . . 6 (𝜑𝑌𝑃)
100 ttgelitv.x . . . . . 6 (𝜑𝑋𝑃)
101 ttgitvval.b . . . . . . 7 𝑃 = (Base‘𝐻)
102 ttgitvval.m . . . . . . 7 = (-g𝐻)
103101, 102grpsubcl 18655 . . . . . 6 ((𝐻 ∈ Grp ∧ 𝑌𝑃𝑋𝑃) → (𝑌 𝑋) ∈ 𝑃)
10498, 99, 100, 103syl3anc 1370 . . . . 5 (𝜑 → (𝑌 𝑋) ∈ 𝑃)
105 ttgitvval.s . . . . . 6 · = ( ·𝑠𝐻)
106101, 83, 105, 84clmvsass 24252 . . . . 5 ((𝐻 ∈ ℂMod ∧ (((𝐿𝑀) / 𝑀) ∈ 𝑅 ∧ (𝐾 / (1 − 𝐾)) ∈ 𝑅 ∧ (𝑌 𝑋) ∈ 𝑃)) → ((((𝐿𝑀) / 𝑀) · (𝐾 / (1 − 𝐾))) · (𝑌 𝑋)) = (((𝐿𝑀) / 𝑀) · ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋))))
10775, 88, 96, 104, 106syl13anc 1371 . . . 4 (𝜑 → ((((𝐿𝑀) / 𝑀) · (𝐾 / (1 − 𝐾))) · (𝑌 𝑋)) = (((𝐿𝑀) / 𝑀) · ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋))))
10844recnd 11003 . . . . . . 7 (𝜑 → (𝐿𝑀) ∈ ℂ)
109108, 17, 19, 21, 22, 25divmuldivd 11792 . . . . . 6 (𝜑 → (((𝐿𝑀) / 𝑀) · (𝐾 / (1 − 𝐾))) = (((𝐿𝑀) · 𝐾) / (𝑀 · (1 − 𝐾))))
11053, 20oveq12d 7293 . . . . . 6 (𝜑 → (((𝐿𝑀) · 𝐾) / (𝑀 · (1 − 𝐾))) = (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))))
111109, 110eqtrd 2778 . . . . 5 (𝜑 → (((𝐿𝑀) / 𝑀) · (𝐾 / (1 − 𝐾))) = (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))))
112111oveq1d 7290 . . . 4 (𝜑 → ((((𝐿𝑀) / 𝑀) · (𝐾 / (1 − 𝐾))) · (𝑌 𝑋)) = ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) · (𝑌 𝑋)))
113 ttgcontlem1.a . . . . . . . 8 (𝜑𝐴𝑃)
114101, 102grpsubcl 18655 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑋𝑃𝐴𝑃) → (𝑋 𝐴) ∈ 𝑃)
11598, 100, 113, 114syl3anc 1370 . . . . . . 7 (𝜑 → (𝑋 𝐴) ∈ 𝑃)
116 ttgcontlem1.y . . . . . . . . . 10 (𝜑 → (𝑋 𝐴) = (𝐾 · (𝑌 𝐴)))
117116oveq2d 7291 . . . . . . . . 9 (𝜑 → ((1 − 𝐾) · (𝑋 𝐴)) = ((1 − 𝐾) · (𝐾 · (𝑌 𝐴))))
11819, 21mulcomd 10996 . . . . . . . . . . 11 (𝜑 → (𝐾 · (1 − 𝐾)) = ((1 − 𝐾) · 𝐾))
119118oveq1d 7290 . . . . . . . . . 10 (𝜑 → ((𝐾 · (1 − 𝐾)) · (𝑌 𝐴)) = (((1 − 𝐾) · 𝐾) · (𝑌 𝐴)))
120101, 102grpsubcl 18655 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ 𝑌𝑃𝐴𝑃) → (𝑌 𝐴) ∈ 𝑃)
12198, 99, 113, 120syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑌 𝐴) ∈ 𝑃)
122101, 83, 105, 84clmvsass 24252 . . . . . . . . . . 11 ((𝐻 ∈ ℂMod ∧ (𝐾𝑅 ∧ (1 − 𝐾) ∈ 𝑅 ∧ (𝑌 𝐴) ∈ 𝑃)) → ((𝐾 · (1 − 𝐾)) · (𝑌 𝐴)) = (𝐾 · ((1 − 𝐾) · (𝑌 𝐴))))
12375, 89, 94, 121, 122syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝐾 · (1 − 𝐾)) · (𝑌 𝐴)) = (𝐾 · ((1 − 𝐾) · (𝑌 𝐴))))
124101, 83, 105, 84clmvsass 24252 . . . . . . . . . . 11 ((𝐻 ∈ ℂMod ∧ ((1 − 𝐾) ∈ 𝑅𝐾𝑅 ∧ (𝑌 𝐴) ∈ 𝑃)) → (((1 − 𝐾) · 𝐾) · (𝑌 𝐴)) = ((1 − 𝐾) · (𝐾 · (𝑌 𝐴))))
12575, 94, 89, 121, 124syl13anc 1371 . . . . . . . . . 10 (𝜑 → (((1 − 𝐾) · 𝐾) · (𝑌 𝐴)) = ((1 − 𝐾) · (𝐾 · (𝑌 𝐴))))
126119, 123, 1253eqtr3d 2786 . . . . . . . . 9 (𝜑 → (𝐾 · ((1 − 𝐾) · (𝑌 𝐴))) = ((1 − 𝐾) · (𝐾 · (𝑌 𝐴))))
127 eqid 2738 . . . . . . . . . . . . 13 (-g‘(Scalar‘𝐻)) = (-g‘(Scalar‘𝐻))
128 clmlmod 24230 . . . . . . . . . . . . . 14 (𝐻 ∈ ℂMod → 𝐻 ∈ LMod)
12975, 128syl 17 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ LMod)
130101, 105, 83, 84, 102, 127, 129, 92, 89, 121lmodsubdir 20181 . . . . . . . . . . . 12 (𝜑 → ((1(-g‘(Scalar‘𝐻))𝐾) · (𝑌 𝐴)) = ((1 · (𝑌 𝐴)) (𝐾 · (𝑌 𝐴))))
13183, 84clmsub 24243 . . . . . . . . . . . . . 14 ((𝐻 ∈ ℂMod ∧ 1 ∈ 𝑅𝐾𝑅) → (1 − 𝐾) = (1(-g‘(Scalar‘𝐻))𝐾))
13275, 92, 89, 131syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (1 − 𝐾) = (1(-g‘(Scalar‘𝐻))𝐾))
133132oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((1 − 𝐾) · (𝑌 𝐴)) = ((1(-g‘(Scalar‘𝐻))𝐾) · (𝑌 𝐴)))
134101, 105clmvs1 24256 . . . . . . . . . . . . . . 15 ((𝐻 ∈ ℂMod ∧ (𝑌 𝐴) ∈ 𝑃) → (1 · (𝑌 𝐴)) = (𝑌 𝐴))
13575, 121, 134syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑌 𝐴)) = (𝑌 𝐴))
136135eqcomd 2744 . . . . . . . . . . . . 13 (𝜑 → (𝑌 𝐴) = (1 · (𝑌 𝐴)))
137136, 116oveq12d 7293 . . . . . . . . . . . 12 (𝜑 → ((𝑌 𝐴) (𝑋 𝐴)) = ((1 · (𝑌 𝐴)) (𝐾 · (𝑌 𝐴))))
138130, 133, 1373eqtr4d 2788 . . . . . . . . . . 11 (𝜑 → ((1 − 𝐾) · (𝑌 𝐴)) = ((𝑌 𝐴) (𝑋 𝐴)))
139101, 102grpnnncan2 18672 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ (𝑌𝑃𝑋𝑃𝐴𝑃)) → ((𝑌 𝐴) (𝑋 𝐴)) = (𝑌 𝑋))
14098, 99, 100, 113, 139syl13anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝑌 𝐴) (𝑋 𝐴)) = (𝑌 𝑋))
141138, 140eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((1 − 𝐾) · (𝑌 𝐴)) = (𝑌 𝑋))
142141oveq2d 7291 . . . . . . . . 9 (𝜑 → (𝐾 · ((1 − 𝐾) · (𝑌 𝐴))) = (𝐾 · (𝑌 𝑋)))
143117, 126, 1423eqtr2rd 2785 . . . . . . . 8 (𝜑 → (𝐾 · (𝑌 𝑋)) = ((1 − 𝐾) · (𝑋 𝐴)))
144101, 105, 83, 84, 74, 89, 94, 104, 115, 57, 143cvsmuleqdivd 24297 . . . . . . 7 (𝜑 → (𝑌 𝑋) = (((1 − 𝐾) / 𝐾) · (𝑋 𝐴)))
145101, 105, 83, 84, 74, 94, 89, 104, 115, 25, 57, 144cvsdiveqd 24298 . . . . . 6 (𝜑 → ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋)) = (𝑋 𝐴))
146145, 115eqeltrd 2839 . . . . 5 (𝜑 → ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋)) ∈ 𝑃)
147 ttgcontlem1.b . . . . . . 7 (𝜑𝐵 = (𝐴 + (𝐿 · (𝑁 𝐴))))
148 ttgcontlem1.n . . . . . . . . . 10 (𝜑𝑁𝑃)
149101, 102grpsubcl 18655 . . . . . . . . . 10 ((𝐻 ∈ Grp ∧ 𝑁𝑃𝐴𝑃) → (𝑁 𝐴) ∈ 𝑃)
15098, 148, 113, 149syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑁 𝐴) ∈ 𝑃)
151101, 83, 105, 84lmodvscl 20140 . . . . . . . . 9 ((𝐻 ∈ LMod ∧ 𝐿𝑅 ∧ (𝑁 𝐴) ∈ 𝑃) → (𝐿 · (𝑁 𝐴)) ∈ 𝑃)
152129, 77, 150, 151syl3anc 1370 . . . . . . . 8 (𝜑 → (𝐿 · (𝑁 𝐴)) ∈ 𝑃)
153 ttgitvval.p . . . . . . . . 9 + = (+g𝐻)
154101, 153grpcl 18585 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝐴𝑃 ∧ (𝐿 · (𝑁 𝐴)) ∈ 𝑃) → (𝐴 + (𝐿 · (𝑁 𝐴))) ∈ 𝑃)
15598, 113, 152, 154syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴 + (𝐿 · (𝑁 𝐴))) ∈ 𝑃)
156147, 155eqeltrd 2839 . . . . . 6 (𝜑𝐵𝑃)
157101, 102grpsubcl 18655 . . . . . 6 ((𝐻 ∈ Grp ∧ 𝐵𝑃𝑋𝑃) → (𝐵 𝑋) ∈ 𝑃)
15898, 156, 100, 157syl3anc 1370 . . . . 5 (𝜑 → (𝐵 𝑋) ∈ 𝑃)
159 ttgcontlem1.r . . . . . 6 (𝜑𝐿𝑀)
16052, 17, 159subne0d 11341 . . . . 5 (𝜑 → (𝐿𝑀) ≠ 0)
161 ttgcontlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 𝐴) = (𝑀 · (𝑁 𝐴)))
162161oveq2d 7291 . . . . . . . . 9 (𝜑 → ((𝐿𝑀) · (𝑋 𝐴)) = ((𝐿𝑀) · (𝑀 · (𝑁 𝐴))))
16317, 108mulcomd 10996 . . . . . . . . . . 11 (𝜑 → (𝑀 · (𝐿𝑀)) = ((𝐿𝑀) · 𝑀))
164163oveq1d 7290 . . . . . . . . . 10 (𝜑 → ((𝑀 · (𝐿𝑀)) · (𝑁 𝐴)) = (((𝐿𝑀) · 𝑀) · (𝑁 𝐴)))
165101, 83, 105, 84clmvsass 24252 . . . . . . . . . . 11 ((𝐻 ∈ ℂMod ∧ (𝑀𝑅 ∧ (𝐿𝑀) ∈ 𝑅 ∧ (𝑁 𝐴) ∈ 𝑃)) → ((𝑀 · (𝐿𝑀)) · (𝑁 𝐴)) = (𝑀 · ((𝐿𝑀) · (𝑁 𝐴))))
16675, 82, 86, 150, 165syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑀 · (𝐿𝑀)) · (𝑁 𝐴)) = (𝑀 · ((𝐿𝑀) · (𝑁 𝐴))))
167101, 83, 105, 84clmvsass 24252 . . . . . . . . . . 11 ((𝐻 ∈ ℂMod ∧ ((𝐿𝑀) ∈ 𝑅𝑀𝑅 ∧ (𝑁 𝐴) ∈ 𝑃)) → (((𝐿𝑀) · 𝑀) · (𝑁 𝐴)) = ((𝐿𝑀) · (𝑀 · (𝑁 𝐴))))
16875, 86, 82, 150, 167syl13anc 1371 . . . . . . . . . 10 (𝜑 → (((𝐿𝑀) · 𝑀) · (𝑁 𝐴)) = ((𝐿𝑀) · (𝑀 · (𝑁 𝐴))))
169164, 166, 1683eqtr3d 2786 . . . . . . . . 9 (𝜑 → (𝑀 · ((𝐿𝑀) · (𝑁 𝐴))) = ((𝐿𝑀) · (𝑀 · (𝑁 𝐴))))
170101, 105, 83, 84, 102, 127, 129, 77, 82, 150lmodsubdir 20181 . . . . . . . . . . . 12 (𝜑 → ((𝐿(-g‘(Scalar‘𝐻))𝑀) · (𝑁 𝐴)) = ((𝐿 · (𝑁 𝐴)) (𝑀 · (𝑁 𝐴))))
17183, 84clmsub 24243 . . . . . . . . . . . . . 14 ((𝐻 ∈ ℂMod ∧ 𝐿𝑅𝑀𝑅) → (𝐿𝑀) = (𝐿(-g‘(Scalar‘𝐻))𝑀))
17275, 77, 82, 171syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝐿𝑀) = (𝐿(-g‘(Scalar‘𝐻))𝑀))
173172oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝐿𝑀) · (𝑁 𝐴)) = ((𝐿(-g‘(Scalar‘𝐻))𝑀) · (𝑁 𝐴)))
174147oveq1d 7290 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 𝐴) = ((𝐴 + (𝐿 · (𝑁 𝐴))) 𝐴))
175 lmodabl 20170 . . . . . . . . . . . . . . . 16 (𝐻 ∈ LMod → 𝐻 ∈ Abel)
176129, 175syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻 ∈ Abel)
177101, 153, 102ablpncan2 19417 . . . . . . . . . . . . . . 15 ((𝐻 ∈ Abel ∧ 𝐴𝑃 ∧ (𝐿 · (𝑁 𝐴)) ∈ 𝑃) → ((𝐴 + (𝐿 · (𝑁 𝐴))) 𝐴) = (𝐿 · (𝑁 𝐴)))
178176, 113, 152, 177syl3anc 1370 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + (𝐿 · (𝑁 𝐴))) 𝐴) = (𝐿 · (𝑁 𝐴)))
179174, 178eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐿 · (𝑁 𝐴)))
180179, 161oveq12d 7293 . . . . . . . . . . . 12 (𝜑 → ((𝐵 𝐴) (𝑋 𝐴)) = ((𝐿 · (𝑁 𝐴)) (𝑀 · (𝑁 𝐴))))
181170, 173, 1803eqtr4d 2788 . . . . . . . . . . 11 (𝜑 → ((𝐿𝑀) · (𝑁 𝐴)) = ((𝐵 𝐴) (𝑋 𝐴)))
182101, 102grpnnncan2 18672 . . . . . . . . . . . 12 ((𝐻 ∈ Grp ∧ (𝐵𝑃𝑋𝑃𝐴𝑃)) → ((𝐵 𝐴) (𝑋 𝐴)) = (𝐵 𝑋))
18398, 156, 100, 113, 182syl13anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝐵 𝐴) (𝑋 𝐴)) = (𝐵 𝑋))
184181, 183eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((𝐿𝑀) · (𝑁 𝐴)) = (𝐵 𝑋))
185184oveq2d 7291 . . . . . . . . 9 (𝜑 → (𝑀 · ((𝐿𝑀) · (𝑁 𝐴))) = (𝑀 · (𝐵 𝑋)))
186162, 169, 1853eqtr2rd 2785 . . . . . . . 8 (𝜑 → (𝑀 · (𝐵 𝑋)) = ((𝐿𝑀) · (𝑋 𝐴)))
187101, 105, 83, 84, 74, 82, 86, 158, 115, 22, 186cvsmuleqdivd 24297 . . . . . . 7 (𝜑 → (𝐵 𝑋) = (((𝐿𝑀) / 𝑀) · (𝑋 𝐴)))
188101, 105, 83, 84, 74, 86, 82, 158, 115, 160, 22, 187cvsdiveqd 24298 . . . . . 6 (𝜑 → ((𝑀 / (𝐿𝑀)) · (𝐵 𝑋)) = (𝑋 𝐴))
189145, 188eqtr4d 2781 . . . . 5 (𝜑 → ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋)) = ((𝑀 / (𝐿𝑀)) · (𝐵 𝑋)))
190101, 105, 83, 84, 74, 82, 86, 146, 158, 22, 160, 189cvsdiveqd 24298 . . . 4 (𝜑 → (((𝐿𝑀) / 𝑀) · ((𝐾 / (1 − 𝐾)) · (𝑌 𝑋))) = (𝐵 𝑋))
191107, 112, 1903eqtr3rd 2787 . . 3 (𝜑 → (𝐵 𝑋) = ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) · (𝑌 𝑋)))
192 oveq1 7282 . . . 4 (𝑘 = (((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) → (𝑘 · (𝑌 𝑋)) = ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) · (𝑌 𝑋)))
193192rspceeqv 3575 . . 3 (((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) ∈ (0[,]1) ∧ (𝐵 𝑋) = ((((𝐿 · 𝐾) − (𝑀 · 𝐾)) / ((𝑀 · 1) − (𝑀 · 𝐾))) · (𝑌 𝑋))) → ∃𝑘 ∈ (0[,]1)(𝐵 𝑋) = (𝑘 · (𝑌 𝑋)))
19473, 191, 193syl2anc 584 . 2 (𝜑 → ∃𝑘 ∈ (0[,]1)(𝐵 𝑋) = (𝑘 · (𝑌 𝑋)))
195 ttgval.n . . 3 𝐺 = (toTG‘𝐻)
196 ttgitvval.i . . 3 𝐼 = (Itv‘𝐺)
197195, 196, 101, 102, 105, 100, 99, 74, 156ttgelitv 27250 . 2 (𝜑 → (𝐵 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝐵 𝑋) = (𝑘 · (𝑌 𝑋))))
198194, 197mpbird 256 1 (𝜑𝐵 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  +crp 12730  [,]cicc 13082  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  -gcsg 18579  Abelcabl 19387  LModclmod 20123  ℂModcclm 24225  ℂVecccvs 24286  Itvcitv 26794  toTGcttg 27234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-icc 13086  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lvec 20365  df-cnfld 20598  df-clm 24226  df-cvs 24287  df-itv 26796  df-lng 26797  df-ttg 27235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator