| Metamath
Proof Explorer Theorem List (p. 251 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cphtpc 25001 | Extend class notation with the path homotopy relation. |
| class ≃ph | ||
| Definition | df-htpy 25002* | Define the function which takes topological spaces 𝑋, 𝑌 and two continuous functions 𝐹, 𝐺:𝑋⟶𝑌 and returns the class of homotopies from 𝐹 to 𝐺. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) | ||
| Definition | df-phtpy 25003* | Define the class of path homotopies between two paths 𝐹, 𝐺:II⟶𝑋; these are homotopies (in the sense of df-htpy 25002) which also preserve both endpoints of the paths throughout the homotopy. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) | ||
| Theorem | ishtpy 25004* | Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) | ||
| Theorem | htpycn 25005 | A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) | ||
| Theorem | htpyi 25006 | A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) | ||
| Theorem | ishtpyd 25007* | Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | ||
| Theorem | htpycom 25008* | Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) | ||
| Theorem | htpyid 25009* | A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) | ||
| Theorem | htpyco1 25010* | Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) | ||
| Theorem | htpyco2 25011 | Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑃 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(𝐽 Htpy 𝐿)(𝑃 ∘ 𝐺))) | ||
| Theorem | htpycc 25012* | Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) & ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻)) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻)) | ||
| Theorem | isphtpy 25013* | Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) | ||
| Theorem | phtpyhtpy 25014 | A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) | ||
| Theorem | phtpycn 25015 | A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽)) | ||
| Theorem | phtpyi 25016 | Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) | ||
| Theorem | phtpy01 25017 | Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
| Theorem | isphtpyd 25018* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
| Theorem | isphtpy2d 25019* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn 𝐽)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐺‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
| Theorem | phtpycom 25020* | Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) | ||
| Theorem | phtpyid 25021* | A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) | ||
| Theorem | phtpyco2 25022 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) | ||
| Theorem | phtpycc 25023* | Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1)))) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺)) & ⊢ (𝜑 → 𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | ||
| Definition | df-phtpc 25024* | Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| ⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) | ||
| Theorem | phtpcrel 25025 | The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.) |
| ⊢ Rel ( ≃ph‘𝐽) | ||
| Theorem | isphtpc 25026 | The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | ||
| Theorem | phtpcer 25027 | Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | ||
| Theorem | phtpc01 25028 | Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝐹( ≃ph‘𝐽)𝐺 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
| Theorem | reparphti 25029* | Lemma for reparpht 25031. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) Avoid ax-mulf 11235. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) & ⊢ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺‘𝑥)) + (𝑦 · 𝑥)))) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐹 ∘ 𝐺)(PHtpy‘𝐽)𝐹)) | ||
| Theorem | reparphtiOLD 25030* | Obsolete version of reparphti 25029 as of 9-Apr-2025. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) & ⊢ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺‘𝑥)) + (𝑦 · 𝑥)))) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐹 ∘ 𝐺)(PHtpy‘𝐽)𝐹)) | ||
| Theorem | reparpht 25031 | Reparametrization lemma. The reparametrization of a path by any continuous map 𝐺:II⟶II with 𝐺(0) = 0 and 𝐺(1) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺)( ≃ph‘𝐽)𝐹) | ||
| Theorem | phtpcco2 25032 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) | ||
| Syntax | cpco 25033 | Extend class notation with the concatenation operation for paths in a topological space. |
| class *𝑝 | ||
| Syntax | comi 25034 | Extend class notation with the loop space. |
| class Ω1 | ||
| Syntax | comn 25035 | Extend class notation with the higher loop spaces. |
| class Ω𝑛 | ||
| Syntax | cpi1 25036 | Extend class notation with the fundamental group. |
| class π1 | ||
| Syntax | cpin 25037 | Extend class notation with the higher homotopy groups. |
| class πn | ||
| Definition | df-pco 25038* | Define the concatenation of two paths in a topological space 𝐽. For simplicity of definition, we define it on all paths, not just those whose endpoints line up. Definition of [Hatcher] p. 26. Hatcher denotes path concatenation with a square dot; other authors, such as Munkres, use a star. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | ||
| Definition | df-om1 25039* | Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ Ω1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx), (*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ↑ko II)〉}) | ||
| Definition | df-omn 25040* | Define the n-th iterated loop space of a topological space. Unlike Ω1 this is actually a pointed topological space, which is to say a tuple of a topological space (a member of TopSp, not Top) and a point in the space. Higher loop spaces select the constant loop at the point from the lower loop space for the distinguished point. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦ 〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd ‘𝑥)), ((0[,]1) × {(2nd ‘𝑥)})〉) ∘ 1st ), 〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) | ||
| Definition | df-pi1 25041* | Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of [Hatcher] p. 26. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | ||
| Definition | df-pin 25042* | Define the n-th homotopy group, which is formed by taking the 𝑛-th loop space and forming the quotient under the relation of path homotopy equivalence in the base space of the 𝑛-th loop space, which is the 𝑛 − 1-th loop space. For 𝑛 = 0, since this is not well-defined we replace this relation with the path-connectedness relation, so that the 0-th homotopy group is the set of path components of 𝑋. (Since the 0-th loop space does not have a group operation, neither does the 0-th homotopy group, but the rest are genuine groups.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ πn = (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, ( ≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1))))))))) | ||
| Theorem | pcofval 25043* | The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | ||
| Theorem | pcoval 25044* | The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) | ||
| Theorem | pcovalg 25045 | Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) | ||
| Theorem | pcoval1 25046 | Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) | ||
| Theorem | pco0 25047 | The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) | ||
| Theorem | pco1 25048 | The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) | ||
| Theorem | pcoval2 25049 | Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1))) | ||
| Theorem | pcocn 25050 | The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) | ||
| Theorem | copco 25051 | The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹(*𝑝‘𝐽)𝐺)) = ((𝐻 ∘ 𝐹)(*𝑝‘𝐾)(𝐻 ∘ 𝐺))) | ||
| Theorem | pcohtpylem 25052* | Lemma for pcohtpy 25053. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) & ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) | ||
| Theorem | pcohtpy 25053 | Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) | ||
| Theorem | pcoptcl 25054 | A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) | ||
| Theorem | pcopt 25055 | Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝐹) | ||
| Theorem | pcopt2 25056 | Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)𝐹) | ||
| Theorem | pcoass 25057* | Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → (𝐺‘1) = (𝐻‘0)) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))) | ||
| Theorem | pcorevcl 25058* | Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) | ||
| Theorem | pcorevlem 25059* | Lemma for pcorev 25060. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) & ⊢ 𝐻 = (𝑠 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝐹‘if(𝑠 ≤ (1 / 2), (1 − ((1 − 𝑡) · (2 · 𝑠))), (1 − ((1 − 𝑡) · (1 − ((2 · 𝑠) − 1))))))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐻 ∈ ((𝐺(*𝑝‘𝐽)𝐹)(PHtpy‘𝐽)𝑃) ∧ (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃)) | ||
| Theorem | pcorev 25060* | Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃) | ||
| Theorem | pcorev2 25061* | Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) | ||
| Theorem | pcophtb 25062* | The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹 − 𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ≃ph‘𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)𝑃 ↔ 𝐹( ≃ph‘𝐽)𝐺)) | ||
| Theorem | om1val 25063* | The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) & ⊢ (𝜑 → + = (*𝑝‘𝐽)) & ⊢ (𝜑 → 𝐾 = (𝐽 ↑ko II)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐾〉}) | ||
| Theorem | om1bas 25064* | The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) | ||
| Theorem | om1elbas 25065 | Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) | ||
| Theorem | om1addcl 25066 | Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) & ⊢ (𝜑 → 𝐻 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ 𝐵) | ||
| Theorem | om1plusg 25067 | The group operation (which isn't much more than a magma) of the loop space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (*𝑝‘𝐽) = (+g‘𝑂)) | ||
| Theorem | om1tset 25068 | The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐽 ↑ko II) = (TopSet‘𝑂)) | ||
| Theorem | om1opn 25069 | The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝐾 = (TopOpen‘𝑂) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐾 = ((𝐽 ↑ko II) ↾t 𝐵)) | ||
| Theorem | pi1val 25070 | The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) ⇒ ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) | ||
| Theorem | pi1bas 25071 | The base set of the fundamental group of a topological space at a given base point. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐵 = (𝐾 / ( ≃ph‘𝐽))) | ||
| Theorem | pi1blem 25072 | Lemma for pi1buni 25073. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) | ||
| Theorem | pi1buni 25073 | Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → ∪ 𝐵 = 𝐾) | ||
| Theorem | pi1bas2 25074 | The base set of the fundamental group, written self-referentially. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) ⇒ ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / ( ≃ph‘𝐽))) | ||
| Theorem | pi1eluni 25075 | Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐹 ∈ ∪ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) | ||
| Theorem | pi1bas3 25076 | The base set of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) ⇒ ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / 𝑅)) | ||
| Theorem | pi1cpbl 25077 | The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ + = (+g‘𝑂) ⇒ ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) | ||
| Theorem | elpi1 25078* | The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) | ||
| Theorem | elpi1i 25079 | The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = 𝑌) & ⊢ (𝜑 → (𝐹‘1) = 𝑌) ⇒ ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ 𝐵) | ||
| Theorem | pi1addf 25080 | The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | pi1addval 25081 | The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ∪ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ∪ 𝐵) ⇒ ⊢ (𝜑 → ([𝑀]( ≃ph‘𝐽) + [𝑁]( ≃ph‘𝐽)) = [(𝑀(*𝑝‘𝐽)𝑁)]( ≃ph‘𝐽)) | ||
| Theorem | pi1grplem 25082 | Lemma for pi1grp 25083. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺))) | ||
| Theorem | pi1grp 25083 | The fundamental group is a group. Proposition 1.3 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝐺 ∈ Grp) | ||
| Theorem | pi1id 25084 | The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺)) | ||
| Theorem | pi1inv 25085* | An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = 𝑌) & ⊢ (𝜑 → (𝐹‘1) = 𝑌) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) | ||
| Theorem | pi1xfrf 25086* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) | ||
| Theorem | pi1xfrval 25087* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) | ||
| Theorem | pi1xfr 25088* | Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
| Theorem | pi1xfrcnvlem 25089* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) | ||
| Theorem | pi1xfrcnv 25090* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → (◡𝐺 = 𝐻 ∧ ◡𝐺 ∈ (𝑄 GrpHom 𝑃))) | ||
| Theorem | pi1xfrgim 25091* | The mapping 𝐺 between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpIso 𝑄)) | ||
| Theorem | pi1cof 25092* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) | ||
| Theorem | pi1coval 25093* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) | ||
| Theorem | pi1coghm 25094* | The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
| Syntax | cclm 25095 | Syntax for the class of subcomplex modules. |
| class ℂMod | ||
| Definition | df-clm 25096* | Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers ℂfld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20575), left modules over such subrings are the same as right modules, see rmodislmod 20928. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))} | ||
| Theorem | isclm 25097 | A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
| Theorem | clmsca 25098 | The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) | ||
| Theorem | clmsubrg 25099 | The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) | ||
| Theorem | clmlmod 25100 | A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |