| Metamath
Proof Explorer Theorem List (p. 251 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clmneg 25001 | Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → -𝐴 = ((invg‘𝐹)‘𝐴)) | ||
| Theorem | clmneg1 25002 | Minus one is in the scalar ring of a subcomplex module. (Contributed by AV, 28-Sep-2021.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → -1 ∈ 𝐾) | ||
| Theorem | clmabs 25003 | Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) | ||
| Theorem | clmacl 25004 | Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
| Theorem | clmmcl 25005 | Closure of ring multiplication for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
| Theorem | clmsubcl 25006 | Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 − 𝑌) ∈ 𝐾) | ||
| Theorem | lmhmclm 25007 | The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod)) | ||
| Theorem | clmvscl 25008 | Closure of scalar product for a subcomplex module. Analogue of lmodvscl 20804. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑄 · 𝑋) ∈ 𝑉) | ||
| Theorem | clmvsass 25009 | Associative law for scalar product. Analogue of lmodvsass 20813. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 · 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
| Theorem | clmvscom 25010 | Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑄 · (𝑅 · 𝑋)) = (𝑅 · (𝑄 · 𝑋))) | ||
| Theorem | clmvsdir 25011 | Distributive law for scalar product (right-distributivity). (lmodvsdir 20812 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 + 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
| Theorem | clmvsdi 25012 | Distributive law for scalar product (left-distributivity). (lmodvsdi 20811 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌))) | ||
| Theorem | clmvs1 25013 | Scalar product with ring unity. (lmodvs1 20816 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) | ||
| Theorem | clmvs2 25014 | A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007.) (Revised by AV, 21-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + 𝐴) = (2 · 𝐴)) | ||
| Theorem | clm0vs 25015 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (lmod0vs 20821 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (0 · 𝑋) = 0 ) | ||
| Theorem | clmopfne 25016 | The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 3-Oct-2021.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ + = (+𝑓‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → + ≠ · ) | ||
| Theorem | isclmp 25017* | The predicate "is a subcomplex module". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ ℂMod ↔ ((𝑊 ∈ Grp ∧ 𝑆 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) | ||
| Theorem | isclmi0 25018* | Properties that determine a subcomplex module. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (ℂfld ↾s 𝐾) & ⊢ 𝑊 ∈ Grp & ⊢ 𝐾 ∈ (SubRing‘ℂfld) & ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ⇒ ⊢ 𝑊 ∈ ℂMod | ||
| Theorem | clmvneg1 25019 | Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (lmodvneg1 20831 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (-1 · 𝑋) = (𝑁‘𝑋)) | ||
| Theorem | clmvsneg 25020 | Multiplication of a vector by a negated scalar. (lmodvsneg 20832 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = (-𝑅 · 𝑋)) | ||
| Theorem | clmmulg 25021 | The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∙ = (.g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | clmsubdir 25022 | Scalar multiplication distributive law for subtraction. (lmodsubdir 20846 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝑋) = ((𝐴 · 𝑋) − (𝐵 · 𝑋))) | ||
| Theorem | clmpm1dir 25023 | Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007.) (Revised by AV, 21-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (-1 · (𝐵 · 𝐶)))) | ||
| Theorem | clmnegneg 25024 | Double negative of a vector. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 21-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (-1 · (-1 · 𝐴)) = 𝐴) | ||
| Theorem | clmnegsubdi2 25025 | Distribution of negative over vector subtraction. (Contributed by NM, 6-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (-1 · (𝐴 + (-1 · 𝐵))) = (𝐵 + (-1 · 𝐴))) | ||
| Theorem | clmsub4 25026 | Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷)))) | ||
| Theorem | clmvsrinv 25027 | A vector minus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = 0 ) | ||
| Theorem | clmvslinv 25028 | Minus a vector plus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ((-1 · 𝐴) + 𝐴) = 0 ) | ||
| Theorem | clmvsubval 25029 | Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20843. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) | ||
| Theorem | clmvsubval2 25030 | Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = ((-1 · 𝐵) + 𝐴)) | ||
| Theorem | clmvz 25031 | Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → ( 0 − 𝐴) = (-1 · 𝐴)) | ||
| Theorem | zlmclm 25032 | The ℤ-module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod) | ||
| Theorem | clmzlmvsca 25033 | The scalar product of a subcomplex module matches the scalar product of the derived ℤ-module, which implies, together with zlmbas 21447 and zlmplusg 21448, that any module over ℤ is structure-equivalent to the canonical ℤ-module ℤMod‘𝐺. (Contributed by Mario Carneiro, 30-Oct-2015.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ ℂMod ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋)) → (𝐴( ·𝑠 ‘𝐺)𝐵) = (𝐴( ·𝑠 ‘𝑊)𝐵)) | ||
| Theorem | nmoleub2lem 25034* | Lemma for nmoleub2a 25037 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) & ⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝜓 → (𝐿‘𝑥) ≤ 𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 (𝜓 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
| Theorem | nmoleub2lem3 25035* | Lemma for nmoleub2a 25037 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑆)) & ⊢ (𝜑 → ((𝑟 · 𝐵) ∈ 𝑉 → ((𝐿‘(𝑟 · 𝐵)) < 𝑅 → ((𝑀‘(𝐹‘(𝑟 · 𝐵))) / 𝑅) ≤ 𝐴))) & ⊢ (𝜑 → ¬ (𝑀‘(𝐹‘𝐵)) ≤ (𝐴 · (𝐿‘𝐵))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | nmoleub2lem2 25036* | Lemma for nmoleub2a 25037 and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥)𝑂𝑅 → (𝐿‘𝑥) ≤ 𝑅)) & ⊢ (((𝐿‘𝑥) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((𝐿‘𝑥) < 𝑅 → (𝐿‘𝑥)𝑂𝑅)) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥)𝑂𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
| Theorem | nmoleub2a 25037* | The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) ≤ 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
| Theorem | nmoleub2b 25038* | The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ℚ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) < 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
| Theorem | nmoleub3 25039* | The operator norm is the supremum of the value of a linear operator on the unit sphere. (Contributed by Mario Carneiro, 19-Oct-2015.) (Proof shortened by AV, 29-Sep-2021.) |
| ⊢ 𝑁 = (𝑆 normOp 𝑇) & ⊢ 𝑉 = (Base‘𝑆) & ⊢ 𝐿 = (norm‘𝑆) & ⊢ 𝑀 = (norm‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐾 = (Base‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩ ℂMod)) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → ℝ ⊆ 𝐾) ⇒ ⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) | ||
| Theorem | nmhmcn 25040 | A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐾 = (TopOpen‘𝑇) & ⊢ 𝐺 = (Scalar‘𝑆) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmMod ∩ ℂMod) ∧ 𝑇 ∈ (NrmMod ∩ ℂMod) ∧ ℚ ⊆ 𝐵) → (𝐹 ∈ (𝑆 NMHom 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
| Theorem | cmodscexp 25041 | The powers of i belong to the scalar subring of a subcomplex module if i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑁 ∈ ℕ) → (i↑𝑁) ∈ 𝐾) | ||
| Theorem | cmodscmulexp 25042 | The scalar product of a vector with powers of i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains i. (Contributed by AV, 18-Oct-2021.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ)) → ((i↑𝑁) · 𝐵) ∈ 𝑋) | ||
Usually, "complex vector spaces" are vector spaces over the field of the complex numbers, see for example the definition in [Roman] p. 36. In the setting of set.mm, it is convenient to consider collectively vector spaces on subfields of the field of complex numbers. We call these, "subcomplex vector spaces" and collect them in the class ℂVec defined in df-cvs 25044 and characterized in iscvs 25047. These include rational vector spaces (qcvs 25067), real vector spaces (recvs 25066) and complex vector spaces (cncvs 25065). This definition is analogous to the definition of subcomplex modules (and their class ℂMod), which are modules over subrings of the field of complex numbers. Note that ZZ-modules (that are roughly the same thing as Abelian groups, see zlmclm 25032) are subcomplex modules but are not subcomplex vector spaces (see zclmncvs 25068), because the ring ZZ is not a division ring (see zringndrg 21398). Since the field of complex numbers is commutative, so are its subrings, so there is no need to explicitly state "left module" or "left vector space" for subcomplex modules or vector spaces. | ||
| Syntax | ccvs 25043 | Syntax for the class of subcomplex vector spaces. |
| class ℂVec | ||
| Definition | df-cvs 25044 | Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ ℂVec = (ℂMod ∩ LVec) | ||
| Theorem | cvslvec 25045 | A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LVec) | ||
| Theorem | cvsclm 25046 | A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ (𝜑 → 𝑊 ∈ ℂVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
| Theorem | iscvs 25047 | A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
| ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) | ||
| Theorem | iscvsp 25048* | The predicate "is a subcomplex vector space". (Contributed by NM, 31-May-2008.) (Revised by AV, 4-Oct-2021.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ ℂVec ↔ ((𝑊 ∈ Grp ∧ (𝑆 ∈ DivRing ∧ 𝑆 = (ℂfld ↾s 𝐾)) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ∧ ∀𝑥 ∈ 𝑉 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝐾 ((𝑦 · 𝑥) ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝐾 (((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥)) ∧ ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))))))) | ||
| Theorem | iscvsi 25049* | Properties that determine a subcomplex vector space. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 4-Oct-2021.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 ∈ Grp & ⊢ 𝑆 = (ℂfld ↾s 𝐾) & ⊢ 𝑆 ∈ DivRing & ⊢ 𝐾 ∈ (SubRing‘ℂfld) & ⊢ (𝑥 ∈ 𝑉 → (1 · 𝑥) = 𝑥) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑦 · 𝑥) ∈ 𝑉) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 + 𝑦) · 𝑥) = ((𝑧 · 𝑥) + (𝑦 · 𝑥))) & ⊢ ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → ((𝑧 · 𝑦) · 𝑥) = (𝑧 · (𝑦 · 𝑥))) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
| Theorem | cvsi 25050* | The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
| ⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (Base‘(Scalar‘𝑊)) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ ∙ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥 ∈ 𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧 ∈ 𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))) | ||
| Theorem | cvsunit 25051 | Unit group of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) | ||
| Theorem | cvsdiv 25052 | Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) | ||
| Theorem | cvsdivcl 25053 | The scalar field of a subcomplex vector space is closed under division. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) | ||
| Theorem | cvsmuleqdivd 25054 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) | ||
| Theorem | cvsdiveqd 25055 | An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) | ||
| Theorem | cnlmodlem1 25056 | Lemma 1 for cnlmod 25060. (Contributed by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Base‘𝑊) = ℂ | ||
| Theorem | cnlmodlem2 25057 | Lemma 2 for cnlmod 25060. (Contributed by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (+g‘𝑊) = + | ||
| Theorem | cnlmodlem3 25058 | Lemma 3 for cnlmod 25060. (Contributed by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (Scalar‘𝑊) = ℂfld | ||
| Theorem | cnlmod4 25059 | Lemma 4 for cnlmod 25060. (Contributed by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( ·𝑠 ‘𝑊) = · | ||
| Theorem | cnlmod 25060 | The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ LMod | ||
| Theorem | cnstrcvs 25061 | The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 ∈ ℂVec | ||
| Theorem | cnrbas 25062 | The set of complex numbers is the base set of the complex left module of complex numbers. (Contributed by AV, 21-Sep-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (Base‘𝐶) = ℂ | ||
| Theorem | cnrlmod 25063 | The complex left module of complex numbers is a left module. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LMod | ||
| Theorem | cnrlvec 25064 | The complex left module of complex numbers is a left vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 21-Sep-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ LVec | ||
| Theorem | cncvs 25065 | The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ ℂVec | ||
| Theorem | recvs 25066 | The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.) |
| ⊢ 𝑅 = (ringLMod‘ℝfld) ⇒ ⊢ 𝑅 ∈ ℂVec | ||
| Theorem | qcvs 25067 | The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
| ⊢ 𝑄 = (ringLMod‘(ℂfld ↾s ℚ)) ⇒ ⊢ 𝑄 ∈ ℂVec | ||
| Theorem | zclmncvs 25068 | The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
| ⊢ 𝑍 = (ringLMod‘ℤring) ⇒ ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) | ||
This section characterizes normed subcomplex vector spaces as subcomplex vector spaces which are also normed vector spaces (that is, normed groups with a positively homogeneous norm). For the moment, there is no need of a special token to represent their class, so we only use the characterization isncvsngp 25069. Most theorems for normed subcomplex vector spaces have a label containing "ncvs". The idiom 𝑊 ∈ (NrmVec ∩ ℂVec) is used in the following to say that 𝑊 is a normed subcomplex vector space, i.e., a subcomplex vector space which is also a normed vector space. | ||
| Theorem | isncvsngp 25069* | A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥 ∈ 𝑉 ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥)))) | ||
| Theorem | isncvsngpd 25070* | Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂVec) & ⊢ (𝜑 → 𝑊 ∈ NrmGrp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑘 ∈ 𝐾)) → (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))) ⇒ ⊢ (𝜑 → 𝑊 ∈ (NrmVec ∩ ℂVec)) | ||
| Theorem | ncvsi 25071* | The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥 ∈ 𝑉 (((𝑁‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 (𝑁‘(𝑥 − 𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)) ∧ ∀𝑘 ∈ 𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁‘𝑥))))) | ||
| Theorem | ncvsprp 25072 | Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) | ||
| Theorem | ncvsge0 25073 | The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (𝐴 · (𝑁‘𝐵))) | ||
| Theorem | ncvsm1 25074 | The norm of the opposite of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁‘𝐴)) | ||
| Theorem | ncvsdif 25075 | The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴)))) | ||
| Theorem | ncvspi 25076 | The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴)))) | ||
| Theorem | ncvs1 25077 | From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) & ⊢ 𝐹 = (Scalar‘𝐺) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 0 ) ∧ (1 / (𝑁‘𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁‘𝐴)) · 𝐴)) = 1) | ||
| Theorem | cnrnvc 25078 | The module of complex numbers (as a module over itself) is a normed vector space over itself. The vector operation is +, and the scalar product is ·, and the norm function is abs. (Contributed by AV, 9-Oct-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ NrmVec | ||
| Theorem | cnncvs 25079 | The module of complex numbers (as a module over itself) is a normed subcomplex vector space. The vector operation is +, the scalar product is ·, and the norm is abs (see cnnm 25080) . (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by AV, 9-Oct-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ 𝐶 ∈ (NrmVec ∩ ℂVec) | ||
| Theorem | cnnm 25080 | The norm of the normed subcomplex vector space of complex numbers is the absolute value. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) |
| ⊢ 𝐶 = (ringLMod‘ℂfld) ⇒ ⊢ (norm‘𝐶) = abs | ||
| Theorem | ncvspds 25081 | Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
| ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) | ||
| Theorem | cnindmet 25082 | The metric induced on the complex numbers. cnmet 24679 proves that it is a metric. The induced metric is identical with the original metric on the complex numbers, see cnfldds 21296 and also cnmet 24679. (Contributed by Steve Rodriguez, 5-Dec-2006.) (Revised by AV, 17-Oct-2021.) |
| ⊢ 𝑇 = (ℂfld toNrmGrp abs) ⇒ ⊢ (dist‘𝑇) = (abs ∘ − ) | ||
| Theorem | cnncvsaddassdemo 25083 | Derive the associative law for complex number addition addass 11085 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | cnncvsmulassdemo 25084 | Derive the associative law for complex number multiplication mulass 11086 interpreted as scalar multiplication to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | cnncvsabsnegdemo 25085 | Derive the absolute value of a negative complex number absneg 15176 to demonstrate the use of the properties of a normed subcomplex vector space for the complex numbers. (Contributed by AV, 9-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
| Syntax | ccph 25086 | Extend class notation with the class of subcomplex pre-Hilbert spaces. |
| class ℂPreHil | ||
| Syntax | ctcph 25087 | Function to put a norm on a pre-Hilbert space. |
| class toℂPreHil | ||
| Definition | df-cph 25088* | Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of ℂfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} | ||
| Definition | df-tcph 25089* | Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph 25157). (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) | ||
| Theorem | iscph 25090* | A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂfld ↾s 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾 ∧ 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))))) | ||
| Theorem | cphphl 25091 | A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | ||
| Theorem | cphnlm 25092 | A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | ||
| Theorem | cphngp 25093 | A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) | ||
| Theorem | cphlmod 25094 | A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) | ||
| Theorem | cphlvec 25095 | A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | ||
| Theorem | cphnvc 25096 | A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | ||
| Theorem | cphsubrglem 25097 | Lemma for cphsubrg 25100. (Contributed by Mario Carneiro, 9-Oct-2015.) |
| ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
| Theorem | cphreccllem 25098 | Lemma for cphreccl 25101. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐴)) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾) | ||
| Theorem | cphsca 25099 | A subcomplex pre-Hilbert space is a vector space over a subfield of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) | ||
| Theorem | cphsubrg 25100 | The scalar field of a subcomplex pre-Hilbert space is a subring of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |