MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiv Structured version   Visualization version   GIF version

Theorem cvsdiv 25165
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiv.f 𝐹 = (Scalar‘𝑊)
cvsdiv.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cvsdiv ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))

Proof of Theorem cvsdiv
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂVec)
21cvsclm 25159 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂMod)
3 cvsdiv.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 cvsdiv.k . . . . 5 𝐾 = (Base‘𝐹)
53, 4clmsubrg 25099 . . . 4 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
62, 5syl 17 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld))
7 simpr1 1195 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
8 simpr2 1196 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
9 simpr3 1197 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
10 eldifsn 4786 . . . . 5 (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵𝐾𝐵 ≠ 0))
118, 9, 10sylanbrc 583 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0}))
123, 4cvsunit 25164 . . . . . 6 (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
131, 12syl 17 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹))
143, 4clmsca 25098 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
152, 14syl 17 . . . . . 6 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐹 = (ℂflds 𝐾))
1615fveq2d 6910 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
1713, 16eqtrd 2777 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂflds 𝐾)))
1811, 17eleqtrd 2843 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂflds 𝐾)))
19 eqid 2737 . . . 4 (ℂflds 𝐾) = (ℂflds 𝐾)
20 cnflddiv 21413 . . . 4 / = (/r‘ℂfld)
21 eqid 2737 . . . 4 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
22 eqid 2737 . . . 4 (/r‘(ℂflds 𝐾)) = (/r‘(ℂflds 𝐾))
2319, 20, 21, 22subrgdv 20589 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾𝐵 ∈ (Unit‘(ℂflds 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
246, 7, 18, 23syl3anc 1373 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2515fveq2d 6910 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (/r𝐹) = (/r‘(ℂflds 𝐾)))
2625oveqd 7448 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴(/r𝐹)𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2724, 26eqtr4d 2780 1 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626  cfv 6561  (class class class)co 7431  0cc0 11155   / cdiv 11920  Basecbs 17247  s cress 17274  Scalarcsca 17300  Unitcui 20355  /rcdvr 20400  SubRingcsubrg 20569  fldccnfld 21364  ℂModcclm 25095  ℂVecccvs 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrg 20570  df-drng 20731  df-lvec 21102  df-cnfld 21365  df-clm 25096  df-cvs 25157
This theorem is referenced by:  cvsdivcl  25166
  Copyright terms: Public domain W3C validator