![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsdiv | Structured version Visualization version GIF version |
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiv.f | β’ πΉ = (Scalarβπ) |
cvsdiv.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
cvsdiv | β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) = (π΄(/rβπΉ)π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π β βVec) | |
2 | 1 | cvsclm 24875 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π β βMod) |
3 | cvsdiv.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
4 | cvsdiv.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
5 | 3, 4 | clmsubrg 24815 | . . . 4 β’ (π β βMod β πΎ β (SubRingββfld)) |
6 | 2, 5 | syl 17 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β πΎ β (SubRingββfld)) |
7 | simpr1 1192 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΄ β πΎ) | |
8 | simpr2 1193 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β πΎ) | |
9 | simpr3 1194 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β 0) | |
10 | eldifsn 4791 | . . . . 5 β’ (π΅ β (πΎ β {0}) β (π΅ β πΎ β§ π΅ β 0)) | |
11 | 8, 9, 10 | sylanbrc 581 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β (πΎ β {0})) |
12 | 3, 4 | cvsunit 24880 | . . . . . 6 β’ (π β βVec β (πΎ β {0}) = (UnitβπΉ)) |
13 | 1, 12 | syl 17 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (πΎ β {0}) = (UnitβπΉ)) |
14 | 3, 4 | clmsca 24814 | . . . . . . 7 β’ (π β βMod β πΉ = (βfld βΎs πΎ)) |
15 | 2, 14 | syl 17 | . . . . . 6 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β πΉ = (βfld βΎs πΎ)) |
16 | 15 | fveq2d 6896 | . . . . 5 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (UnitβπΉ) = (Unitβ(βfld βΎs πΎ))) |
17 | 13, 16 | eqtrd 2770 | . . . 4 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (πΎ β {0}) = (Unitβ(βfld βΎs πΎ))) |
18 | 11, 17 | eleqtrd 2833 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β π΅ β (Unitβ(βfld βΎs πΎ))) |
19 | eqid 2730 | . . . 4 β’ (βfld βΎs πΎ) = (βfld βΎs πΎ) | |
20 | cnflddiv 21177 | . . . 4 β’ / = (/rββfld) | |
21 | eqid 2730 | . . . 4 β’ (Unitβ(βfld βΎs πΎ)) = (Unitβ(βfld βΎs πΎ)) | |
22 | eqid 2730 | . . . 4 β’ (/rβ(βfld βΎs πΎ)) = (/rβ(βfld βΎs πΎ)) | |
23 | 19, 20, 21, 22 | subrgdv 20481 | . . 3 β’ ((πΎ β (SubRingββfld) β§ π΄ β πΎ β§ π΅ β (Unitβ(βfld βΎs πΎ))) β (π΄ / π΅) = (π΄(/rβ(βfld βΎs πΎ))π΅)) |
24 | 6, 7, 18, 23 | syl3anc 1369 | . 2 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) = (π΄(/rβ(βfld βΎs πΎ))π΅)) |
25 | 15 | fveq2d 6896 | . . 3 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (/rβπΉ) = (/rβ(βfld βΎs πΎ))) |
26 | 25 | oveqd 7430 | . 2 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄(/rβπΉ)π΅) = (π΄(/rβ(βfld βΎs πΎ))π΅)) |
27 | 24, 26 | eqtr4d 2773 | 1 β’ ((π β βVec β§ (π΄ β πΎ β§ π΅ β πΎ β§ π΅ β 0)) β (π΄ / π΅) = (π΄(/rβπΉ)π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 β cdif 3946 {csn 4629 βcfv 6544 (class class class)co 7413 0cc0 11114 / cdiv 11877 Basecbs 17150 βΎs cress 17179 Scalarcsca 17206 Unitcui 20248 /rcdvr 20293 SubRingcsubrg 20459 βfldccnfld 21146 βModcclm 24811 βVecccvs 24872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-subg 19041 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-cring 20132 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-dvr 20294 df-subrg 20461 df-drng 20504 df-lvec 20860 df-cnfld 21147 df-clm 24812 df-cvs 24873 |
This theorem is referenced by: cvsdivcl 24882 |
Copyright terms: Public domain | W3C validator |