MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiv Structured version   Visualization version   GIF version

Theorem cvsdiv 25178
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiv.f 𝐹 = (Scalar‘𝑊)
cvsdiv.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cvsdiv ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))

Proof of Theorem cvsdiv
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂVec)
21cvsclm 25172 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂMod)
3 cvsdiv.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 cvsdiv.k . . . . 5 𝐾 = (Base‘𝐹)
53, 4clmsubrg 25112 . . . 4 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
62, 5syl 17 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld))
7 simpr1 1193 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
8 simpr2 1194 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
9 simpr3 1195 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
10 eldifsn 4790 . . . . 5 (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵𝐾𝐵 ≠ 0))
118, 9, 10sylanbrc 583 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0}))
123, 4cvsunit 25177 . . . . . 6 (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
131, 12syl 17 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹))
143, 4clmsca 25111 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
152, 14syl 17 . . . . . 6 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐹 = (ℂflds 𝐾))
1615fveq2d 6910 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
1713, 16eqtrd 2774 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂflds 𝐾)))
1811, 17eleqtrd 2840 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂflds 𝐾)))
19 eqid 2734 . . . 4 (ℂflds 𝐾) = (ℂflds 𝐾)
20 cnflddiv 21430 . . . 4 / = (/r‘ℂfld)
21 eqid 2734 . . . 4 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
22 eqid 2734 . . . 4 (/r‘(ℂflds 𝐾)) = (/r‘(ℂflds 𝐾))
2319, 20, 21, 22subrgdv 20605 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾𝐵 ∈ (Unit‘(ℂflds 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
246, 7, 18, 23syl3anc 1370 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2515fveq2d 6910 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (/r𝐹) = (/r‘(ℂflds 𝐾)))
2625oveqd 7447 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴(/r𝐹)𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2724, 26eqtr4d 2777 1 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cdif 3959  {csn 4630  cfv 6562  (class class class)co 7430  0cc0 11152   / cdiv 11917  Basecbs 17244  s cress 17273  Scalarcsca 17300  Unitcui 20371  /rcdvr 20416  SubRingcsubrg 20585  fldccnfld 21381  ℂModcclm 25108  ℂVecccvs 25169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-subrg 20586  df-drng 20747  df-lvec 21119  df-cnfld 21382  df-clm 25109  df-cvs 25170
This theorem is referenced by:  cvsdivcl  25179
  Copyright terms: Public domain W3C validator