MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiv Structured version   Visualization version   GIF version

Theorem cvsdiv 25038
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiv.f 𝐹 = (Scalar‘𝑊)
cvsdiv.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cvsdiv ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))

Proof of Theorem cvsdiv
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂVec)
21cvsclm 25032 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂMod)
3 cvsdiv.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 cvsdiv.k . . . . 5 𝐾 = (Base‘𝐹)
53, 4clmsubrg 24972 . . . 4 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
62, 5syl 17 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld))
7 simpr1 1195 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
8 simpr2 1196 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
9 simpr3 1197 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
10 eldifsn 4752 . . . . 5 (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵𝐾𝐵 ≠ 0))
118, 9, 10sylanbrc 583 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0}))
123, 4cvsunit 25037 . . . . . 6 (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
131, 12syl 17 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹))
143, 4clmsca 24971 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
152, 14syl 17 . . . . . 6 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐹 = (ℂflds 𝐾))
1615fveq2d 6864 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
1713, 16eqtrd 2765 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂflds 𝐾)))
1811, 17eleqtrd 2831 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂflds 𝐾)))
19 eqid 2730 . . . 4 (ℂflds 𝐾) = (ℂflds 𝐾)
20 cnflddiv 21318 . . . 4 / = (/r‘ℂfld)
21 eqid 2730 . . . 4 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
22 eqid 2730 . . . 4 (/r‘(ℂflds 𝐾)) = (/r‘(ℂflds 𝐾))
2319, 20, 21, 22subrgdv 20504 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾𝐵 ∈ (Unit‘(ℂflds 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
246, 7, 18, 23syl3anc 1373 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2515fveq2d 6864 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (/r𝐹) = (/r‘(ℂflds 𝐾)))
2625oveqd 7406 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴(/r𝐹)𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2724, 26eqtr4d 2768 1 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3913  {csn 4591  cfv 6513  (class class class)co 7389  0cc0 11074   / cdiv 11841  Basecbs 17185  s cress 17206  Scalarcsca 17229  Unitcui 20270  /rcdvr 20315  SubRingcsubrg 20484  fldccnfld 21270  ℂModcclm 24968  ℂVecccvs 25029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-subrg 20485  df-drng 20646  df-lvec 21016  df-cnfld 21271  df-clm 24969  df-cvs 25030
This theorem is referenced by:  cvsdivcl  25039
  Copyright terms: Public domain W3C validator