| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiv | Structured version Visualization version GIF version | ||
| Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiv.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cvsdiv | ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂVec) | |
| 2 | 1 | cvsclm 25042 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂMod) |
| 3 | cvsdiv.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | cvsdiv.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | 3, 4 | clmsubrg 24982 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ 𝐾) | |
| 9 | simpr3 1197 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) | |
| 10 | eldifsn 4740 | . . . . 5 ⊢ (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) | |
| 11 | 8, 9, 10 | sylanbrc 583 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0})) |
| 12 | 3, 4 | cvsunit 25047 | . . . . . 6 ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 14 | 3, 4 | clmsca 24981 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
| 15 | 2, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 16 | 15 | fveq2d 6830 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 17 | 13, 16 | eqtrd 2764 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 18 | 11, 17 | eleqtrd 2830 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 19 | eqid 2729 | . . . 4 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 20 | cnflddiv 21325 | . . . 4 ⊢ / = (/r‘ℂfld) | |
| 21 | eqid 2729 | . . . 4 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 22 | eqid 2729 | . . . 4 ⊢ (/r‘(ℂfld ↾s 𝐾)) = (/r‘(ℂfld ↾s 𝐾)) | |
| 23 | 19, 20, 21, 22 | subrgdv 20492 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 24 | 6, 7, 18, 23 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 25 | 15 | fveq2d 6830 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (/r‘𝐹) = (/r‘(ℂfld ↾s 𝐾))) |
| 26 | 25 | oveqd 7370 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴(/r‘𝐹)𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 27 | 24, 26 | eqtr4d 2767 | 1 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ‘cfv 6486 (class class class)co 7353 0cc0 11028 / cdiv 11795 Basecbs 17138 ↾s cress 17159 Scalarcsca 17182 Unitcui 20258 /rcdvr 20303 SubRingcsubrg 20472 ℂfldccnfld 21279 ℂModcclm 24978 ℂVecccvs 25039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrg 20473 df-drng 20634 df-lvec 21025 df-cnfld 21280 df-clm 24979 df-cvs 25040 |
| This theorem is referenced by: cvsdivcl 25049 |
| Copyright terms: Public domain | W3C validator |