| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiv | Structured version Visualization version GIF version | ||
| Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiv.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cvsdiv | ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂVec) | |
| 2 | 1 | cvsclm 25063 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂMod) |
| 3 | cvsdiv.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | cvsdiv.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | 3, 4 | clmsubrg 25003 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ 𝐾) | |
| 9 | simpr3 1197 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) | |
| 10 | eldifsn 4739 | . . . . 5 ⊢ (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) | |
| 11 | 8, 9, 10 | sylanbrc 583 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0})) |
| 12 | 3, 4 | cvsunit 25068 | . . . . . 6 ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 14 | 3, 4 | clmsca 25002 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
| 15 | 2, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 16 | 15 | fveq2d 6835 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 17 | 13, 16 | eqtrd 2768 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 18 | 11, 17 | eleqtrd 2835 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 19 | eqid 2733 | . . . 4 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 20 | cnflddiv 21347 | . . . 4 ⊢ / = (/r‘ℂfld) | |
| 21 | eqid 2733 | . . . 4 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 22 | eqid 2733 | . . . 4 ⊢ (/r‘(ℂfld ↾s 𝐾)) = (/r‘(ℂfld ↾s 𝐾)) | |
| 23 | 19, 20, 21, 22 | subrgdv 20514 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 24 | 6, 7, 18, 23 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 25 | 15 | fveq2d 6835 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (/r‘𝐹) = (/r‘(ℂfld ↾s 𝐾))) |
| 26 | 25 | oveqd 7372 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴(/r‘𝐹)𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 27 | 24, 26 | eqtr4d 2771 | 1 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∖ cdif 3896 {csn 4577 ‘cfv 6489 (class class class)co 7355 0cc0 11016 / cdiv 11784 Basecbs 17130 ↾s cress 17151 Scalarcsca 17174 Unitcui 20283 /rcdvr 20328 SubRingcsubrg 20494 ℂfldccnfld 21301 ℂModcclm 24999 ℂVecccvs 25060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-subg 19046 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-subrg 20495 df-drng 20656 df-lvec 21047 df-cnfld 21302 df-clm 25000 df-cvs 25061 |
| This theorem is referenced by: cvsdivcl 25070 |
| Copyright terms: Public domain | W3C validator |