| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsdiv | Structured version Visualization version GIF version | ||
| Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiv.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cvsdiv | ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂVec) | |
| 2 | 1 | cvsclm 25159 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝑊 ∈ ℂMod) |
| 3 | cvsdiv.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | cvsdiv.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | 3, 4 | clmsubrg 25099 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ 𝐾) | |
| 9 | simpr3 1197 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) | |
| 10 | eldifsn 4786 | . . . . 5 ⊢ (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) | |
| 11 | 8, 9, 10 | sylanbrc 583 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0})) |
| 12 | 3, 4 | cvsunit 25164 | . . . . . 6 ⊢ (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹)) |
| 14 | 3, 4 | clmsca 25098 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
| 15 | 2, 14 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐹 = (ℂfld ↾s 𝐾)) |
| 16 | 15 | fveq2d 6910 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂfld ↾s 𝐾))) |
| 17 | 13, 16 | eqtrd 2777 | . . . 4 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂfld ↾s 𝐾))) |
| 18 | 11, 17 | eleqtrd 2843 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) |
| 19 | eqid 2737 | . . . 4 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 20 | cnflddiv 21413 | . . . 4 ⊢ / = (/r‘ℂfld) | |
| 21 | eqid 2737 | . . . 4 ⊢ (Unit‘(ℂfld ↾s 𝐾)) = (Unit‘(ℂfld ↾s 𝐾)) | |
| 22 | eqid 2737 | . . . 4 ⊢ (/r‘(ℂfld ↾s 𝐾)) = (/r‘(ℂfld ↾s 𝐾)) | |
| 23 | 19, 20, 21, 22 | subrgdv 20589 | . . 3 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ (Unit‘(ℂfld ↾s 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 24 | 6, 7, 18, 23 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 25 | 15 | fveq2d 6910 | . . 3 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (/r‘𝐹) = (/r‘(ℂfld ↾s 𝐾))) |
| 26 | 25 | oveqd 7448 | . 2 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴(/r‘𝐹)𝐵) = (𝐴(/r‘(ℂfld ↾s 𝐾))𝐵)) |
| 27 | 24, 26 | eqtr4d 2780 | 1 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘𝐹)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 ‘cfv 6561 (class class class)co 7431 0cc0 11155 / cdiv 11920 Basecbs 17247 ↾s cress 17274 Scalarcsca 17300 Unitcui 20355 /rcdvr 20400 SubRingcsubrg 20569 ℂfldccnfld 21364 ℂModcclm 25095 ℂVecccvs 25156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-subrg 20570 df-drng 20731 df-lvec 21102 df-cnfld 21365 df-clm 25096 df-cvs 25157 |
| This theorem is referenced by: cvsdivcl 25166 |
| Copyright terms: Public domain | W3C validator |