![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7609 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1450 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: fvproj 8175 seqomlem1 8506 seqomlem4 8509 oav 8567 omv 8568 oev 8570 iunfictbso 10183 fin23lem12 10400 axdc4lem 10524 axcclem 10526 addpipq2 11005 mulpipq2 11008 subval 11527 divval 11951 cnref1o 13050 ixxval 13415 fzval 13569 modval 13922 om2uzrdg 14007 uzrdgsuci 14011 axdc4uzlem 14034 seqval 14063 seqp1 14067 bcval 14353 cnrecnv 15214 risefacval 16056 fallfacval 16057 gcdval 16542 lcmval 16639 imasvscafn 17597 imasvscaval 17598 grpsubval 19025 isghmOLD 19256 lactghmga 19447 efgmval 19754 efgtval 19765 frgpup3lem 19819 dvrval 20429 frlmval 21791 psrvsca 21992 mat1comp 22467 mamulid 22468 mamurid 22469 madufval 22664 xkococnlem 23688 xkococn 23689 cnextval 24090 dscmet 24606 cncfval 24933 htpycom 25027 htpyid 25028 phtpycom 25039 phtpyid 25040 ehl1eudisval 25474 logbval 26827 addsval 28013 subsval 28108 mulsval 28153 divsval 28233 seqsval 28312 om2noseqrdg 28328 noseqrdgsuc 28332 seqsp1 28335 expsval 28426 isismt 28560 clwwlknon 30122 clwwlk0on0 30124 grpodivval 30567 ipval 30735 lnoval 30784 nmoofval 30794 bloval 30813 0ofval 30819 ajfval 30841 hvsubval 31048 hosmval 31767 hommval 31768 hodmval 31769 hfsmval 31770 hfmmval 31771 kbfval 31984 opsqrlem3 32174 dpval 32854 xdivval 32883 smatrcl 33742 smatlem 33743 mdetpmtr12 33771 pstmfval 33842 sxval 34154 ismbfm 34215 dya2iocival 34238 sitgval 34297 sitmval 34314 oddpwdcv 34320 ballotlemgval 34488 vtsval 34614 cvmlift2lem4 35274 icoreval 37319 metf1o 37715 heiborlem3 37773 heiborlem6 37776 heiborlem8 37778 heibor 37781 ldualvs 39093 tendopl 40733 cdlemkuu 40852 dvavsca 40974 dvhvaddval 41047 dvhvscaval 41056 hlhilipval 41910 resubval 42343 prjspnval 42571 rrx2xpref1o 48452 functhinclem1 48708 |
Copyright terms: Public domain | W3C validator |