![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7566 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1450 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 ∈ cmpo 7410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: fvproj 8119 seqomlem1 8449 seqomlem4 8452 oav 8510 omv 8511 oev 8513 iunfictbso 10108 fin23lem12 10325 axdc4lem 10449 axcclem 10451 addpipq2 10930 mulpipq2 10933 subval 11450 divval 11873 cnref1o 12968 ixxval 13331 fzval 13485 modval 13835 om2uzrdg 13920 uzrdgsuci 13924 axdc4uzlem 13947 seqval 13976 seqp1 13980 bcval 14263 cnrecnv 15111 risefacval 15951 fallfacval 15952 gcdval 16436 lcmval 16528 imasvscafn 17482 imasvscaval 17483 grpsubval 18869 isghm 19091 lactghmga 19272 efgmval 19579 efgtval 19590 frgpup3lem 19644 dvrval 20216 frlmval 21302 psrvsca 21509 mat1comp 21941 mamulid 21942 mamurid 21943 madufval 22138 xkococnlem 23162 xkococn 23163 cnextval 23564 dscmet 24080 cncfval 24403 htpycom 24491 htpyid 24492 phtpycom 24503 phtpyid 24504 ehl1eudisval 24937 logbval 26268 addsval 27443 subsval 27529 mulsval 27562 divsval 27634 isismt 27782 clwwlknon 29340 clwwlk0on0 29342 grpodivval 29783 ipval 29951 lnoval 30000 nmoofval 30010 bloval 30029 0ofval 30035 ajfval 30057 hvsubval 30264 hosmval 30983 hommval 30984 hodmval 30985 hfsmval 30986 hfmmval 30987 kbfval 31200 opsqrlem3 31390 dpval 32051 xdivval 32080 smatrcl 32771 smatlem 32772 mdetpmtr12 32800 pstmfval 32871 sxval 33183 ismbfm 33244 dya2iocival 33267 sitgval 33326 sitmval 33343 oddpwdcv 33349 ballotlemgval 33517 vtsval 33644 cvmlift2lem4 34292 icoreval 36229 metf1o 36618 heiborlem3 36676 heiborlem6 36679 heiborlem8 36681 heibor 36684 ldualvs 38002 tendopl 39642 cdlemkuu 39761 dvavsca 39883 dvhvaddval 39956 dvhvscaval 39965 hlhilipval 40819 resubval 41241 prjspnval 41359 rrx2xpref1o 47394 functhinclem1 47651 |
Copyright terms: Public domain | W3C validator |