| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7508 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 (class class class)co 7349 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: fvproj 8067 seqomlem1 8372 seqomlem4 8375 oav 8429 omv 8430 oev 8432 iunfictbso 10008 fin23lem12 10225 axdc4lem 10349 axcclem 10351 addpipq2 10830 mulpipq2 10833 subval 11354 divval 11781 cnref1o 12886 ixxval 13256 fzval 13412 modval 13775 om2uzrdg 13863 uzrdgsuci 13867 axdc4uzlem 13890 seqval 13919 seqp1 13923 bcval 14211 cnrecnv 15072 risefacval 15915 fallfacval 15916 gcdval 16407 lcmval 16503 imasvscafn 17441 imasvscaval 17442 grpsubval 18864 isghmOLD 19095 lactghmga 19284 efgmval 19591 efgtval 19602 frgpup3lem 19656 dvrval 20288 frlmval 21655 psrvsca 21856 mat1comp 22325 mamulid 22326 mamurid 22327 madufval 22522 xkococnlem 23544 xkococn 23545 cnextval 23946 dscmet 24458 cncfval 24779 htpycom 24873 htpyid 24874 phtpycom 24885 phtpyid 24886 ehl1eudisval 25319 logbval 26674 addsval 27874 subsval 27969 mulsval 28017 divsval 28097 seqsval 28187 om2noseqrdg 28203 noseqrdgsuc 28207 seqsp1 28210 expsval 28317 isismt 28479 clwwlknon 30034 clwwlk0on0 30036 grpodivval 30479 ipval 30647 lnoval 30696 nmoofval 30706 bloval 30725 0ofval 30731 ajfval 30753 hvsubval 30960 hosmval 31679 hommval 31680 hodmval 31681 hfsmval 31682 hfmmval 31683 kbfval 31896 opsqrlem3 32086 dpval 32830 xdivval 32859 smatrcl 33763 smatlem 33764 mdetpmtr12 33792 pstmfval 33863 sxval 34157 ismbfm 34218 dya2iocival 34241 sitgval 34300 sitmval 34317 oddpwdcv 34323 ballotlemgval 34492 vtsval 34605 cvmlift2lem4 35279 icoreval 37327 metf1o 37735 heiborlem3 37793 heiborlem6 37796 heiborlem8 37798 heibor 37801 ldualvs 39116 tendopl 40755 cdlemkuu 40874 dvavsca 40996 dvhvaddval 41069 dvhvscaval 41078 hlhilipval 41928 resubval 42340 redivvald 42415 prjspnval 42589 rrx2xpref1o 48703 fuco22natlem 49330 functhinclem1 49429 |
| Copyright terms: Public domain | W3C validator |