| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7528 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: fvproj 8090 seqomlem1 8395 seqomlem4 8398 oav 8452 omv 8453 oev 8455 iunfictbso 10043 fin23lem12 10260 axdc4lem 10384 axcclem 10386 addpipq2 10865 mulpipq2 10868 subval 11388 divval 11815 cnref1o 12920 ixxval 13290 fzval 13446 modval 13809 om2uzrdg 13897 uzrdgsuci 13901 axdc4uzlem 13924 seqval 13953 seqp1 13957 bcval 14245 cnrecnv 15107 risefacval 15950 fallfacval 15951 gcdval 16442 lcmval 16538 imasvscafn 17476 imasvscaval 17477 grpsubval 18893 isghmOLD 19124 lactghmga 19311 efgmval 19618 efgtval 19629 frgpup3lem 19683 dvrval 20288 frlmval 21633 psrvsca 21834 mat1comp 22303 mamulid 22304 mamurid 22305 madufval 22500 xkococnlem 23522 xkococn 23523 cnextval 23924 dscmet 24436 cncfval 24757 htpycom 24851 htpyid 24852 phtpycom 24863 phtpyid 24864 ehl1eudisval 25297 logbval 26652 addsval 27845 subsval 27940 mulsval 27988 divsval 28068 seqsval 28158 om2noseqrdg 28174 noseqrdgsuc 28178 seqsp1 28181 expsval 28287 isismt 28437 clwwlknon 29992 clwwlk0on0 29994 grpodivval 30437 ipval 30605 lnoval 30654 nmoofval 30664 bloval 30683 0ofval 30689 ajfval 30711 hvsubval 30918 hosmval 31637 hommval 31638 hodmval 31639 hfsmval 31640 hfmmval 31641 kbfval 31854 opsqrlem3 32044 dpval 32783 xdivval 32812 smatrcl 33759 smatlem 33760 mdetpmtr12 33788 pstmfval 33859 sxval 34153 ismbfm 34214 dya2iocival 34237 sitgval 34296 sitmval 34313 oddpwdcv 34319 ballotlemgval 34488 vtsval 34601 cvmlift2lem4 35266 icoreval 37314 metf1o 37722 heiborlem3 37780 heiborlem6 37783 heiborlem8 37785 heibor 37788 ldualvs 39103 tendopl 40743 cdlemkuu 40862 dvavsca 40984 dvhvaddval 41057 dvhvscaval 41066 hlhilipval 41916 resubval 42328 redivvald 42403 prjspnval 42577 rrx2xpref1o 48680 fuco22natlem 49307 functhinclem1 49406 |
| Copyright terms: Public domain | W3C validator |