Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7410 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1448 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 (class class class)co 7255 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: fvproj 7946 seqomlem1 8251 seqomlem4 8254 oav 8303 omv 8304 oev 8306 iunfictbso 9801 fin23lem12 10018 axdc4lem 10142 axcclem 10144 addpipq2 10623 mulpipq2 10626 subval 11142 divval 11565 cnref1o 12654 ixxval 13016 fzval 13170 modval 13519 om2uzrdg 13604 uzrdgsuci 13608 axdc4uzlem 13631 seqval 13660 seqp1 13664 bcval 13946 cnrecnv 14804 risefacval 15646 fallfacval 15647 gcdval 16131 lcmval 16225 imasvscafn 17165 imasvscaval 17166 grpsubval 18540 isghm 18749 lactghmga 18928 efgmval 19233 efgtval 19244 frgpup3lem 19298 dvrval 19842 frlmval 20865 psrvsca 21070 mat1comp 21497 mamulid 21498 mamurid 21499 madufval 21694 xkococnlem 22718 xkococn 22719 cnextval 23120 dscmet 23634 cncfval 23957 htpycom 24045 htpyid 24046 phtpycom 24057 phtpyid 24058 ehl1eudisval 24490 logbval 25821 isismt 26799 clwwlknon 28355 clwwlk0on0 28357 grpodivval 28798 ipval 28966 lnoval 29015 nmoofval 29025 bloval 29044 0ofval 29050 ajfval 29072 hvsubval 29279 hosmval 29998 hommval 29999 hodmval 30000 hfsmval 30001 hfmmval 30002 kbfval 30215 opsqrlem3 30405 dpval 31066 xdivval 31095 smatrcl 31648 smatlem 31649 mdetpmtr12 31677 pstmfval 31748 sxval 32058 ismbfm 32119 dya2iocival 32140 sitgval 32199 sitmval 32216 oddpwdcv 32222 ballotlemgval 32390 vtsval 32517 cvmlift2lem4 33168 addsval 34053 icoreval 35451 metf1o 35840 heiborlem3 35898 heiborlem6 35901 heiborlem8 35903 heibor 35906 ldualvs 37078 tendopl 38717 cdlemkuu 38836 dvavsca 38958 dvhvaddval 39031 dvhvscaval 39040 hlhilipval 39894 resubval 40271 prjspnval 40376 rrx2xpref1o 45952 functhinclem1 46210 |
Copyright terms: Public domain | W3C validator |