| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7564 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 (class class class)co 7403 ∈ cmpo 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 |
| This theorem is referenced by: fvproj 8131 seqomlem1 8462 seqomlem4 8465 oav 8521 omv 8522 oev 8524 iunfictbso 10126 fin23lem12 10343 axdc4lem 10467 axcclem 10469 addpipq2 10948 mulpipq2 10951 subval 11471 divval 11896 cnref1o 12999 ixxval 13368 fzval 13524 modval 13886 om2uzrdg 13972 uzrdgsuci 13976 axdc4uzlem 13999 seqval 14028 seqp1 14032 bcval 14320 cnrecnv 15182 risefacval 16022 fallfacval 16023 gcdval 16513 lcmval 16609 imasvscafn 17549 imasvscaval 17550 grpsubval 18966 isghmOLD 19197 lactghmga 19384 efgmval 19691 efgtval 19702 frgpup3lem 19756 dvrval 20361 frlmval 21706 psrvsca 21907 mat1comp 22376 mamulid 22377 mamurid 22378 madufval 22573 xkococnlem 23595 xkococn 23596 cnextval 23997 dscmet 24509 cncfval 24830 htpycom 24924 htpyid 24925 phtpycom 24936 phtpyid 24937 ehl1eudisval 25371 logbval 26726 addsval 27912 subsval 28007 mulsval 28052 divsval 28132 seqsval 28211 om2noseqrdg 28227 noseqrdgsuc 28231 seqsp1 28234 expsval 28325 isismt 28459 clwwlknon 30017 clwwlk0on0 30019 grpodivval 30462 ipval 30630 lnoval 30679 nmoofval 30689 bloval 30708 0ofval 30714 ajfval 30736 hvsubval 30943 hosmval 31662 hommval 31663 hodmval 31664 hfsmval 31665 hfmmval 31666 kbfval 31879 opsqrlem3 32069 dpval 32810 xdivval 32839 smatrcl 33773 smatlem 33774 mdetpmtr12 33802 pstmfval 33873 sxval 34167 ismbfm 34228 dya2iocival 34251 sitgval 34310 sitmval 34327 oddpwdcv 34333 ballotlemgval 34502 vtsval 34615 cvmlift2lem4 35274 icoreval 37317 metf1o 37725 heiborlem3 37783 heiborlem6 37786 heiborlem8 37788 heibor 37791 ldualvs 39101 tendopl 40741 cdlemkuu 40860 dvavsca 40982 dvhvaddval 41055 dvhvscaval 41064 hlhilipval 41914 resubval 42357 prjspnval 42586 rrx2xpref1o 48646 fuco22natlem 49204 functhinclem1 49278 |
| Copyright terms: Public domain | W3C validator |