Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7432 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1449 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: fvproj 7975 seqomlem1 8281 seqomlem4 8284 oav 8341 omv 8342 oev 8344 iunfictbso 9870 fin23lem12 10087 axdc4lem 10211 axcclem 10213 addpipq2 10692 mulpipq2 10695 subval 11212 divval 11635 cnref1o 12725 ixxval 13087 fzval 13241 modval 13591 om2uzrdg 13676 uzrdgsuci 13680 axdc4uzlem 13703 seqval 13732 seqp1 13736 bcval 14018 cnrecnv 14876 risefacval 15718 fallfacval 15719 gcdval 16203 lcmval 16297 imasvscafn 17248 imasvscaval 17249 grpsubval 18625 isghm 18834 lactghmga 19013 efgmval 19318 efgtval 19329 frgpup3lem 19383 dvrval 19927 frlmval 20955 psrvsca 21160 mat1comp 21589 mamulid 21590 mamurid 21591 madufval 21786 xkococnlem 22810 xkococn 22811 cnextval 23212 dscmet 23728 cncfval 24051 htpycom 24139 htpyid 24140 phtpycom 24151 phtpyid 24152 ehl1eudisval 24585 logbval 25916 isismt 26895 clwwlknon 28454 clwwlk0on0 28456 grpodivval 28897 ipval 29065 lnoval 29114 nmoofval 29124 bloval 29143 0ofval 29149 ajfval 29171 hvsubval 29378 hosmval 30097 hommval 30098 hodmval 30099 hfsmval 30100 hfmmval 30101 kbfval 30314 opsqrlem3 30504 dpval 31164 xdivval 31193 smatrcl 31746 smatlem 31747 mdetpmtr12 31775 pstmfval 31846 sxval 32158 ismbfm 32219 dya2iocival 32240 sitgval 32299 sitmval 32316 oddpwdcv 32322 ballotlemgval 32490 vtsval 32617 cvmlift2lem4 33268 addsval 34126 icoreval 35524 metf1o 35913 heiborlem3 35971 heiborlem6 35974 heiborlem8 35976 heibor 35979 ldualvs 37151 tendopl 38790 cdlemkuu 38909 dvavsca 39031 dvhvaddval 39104 dvhvscaval 39113 hlhilipval 39967 resubval 40350 prjspnval 40455 rrx2xpref1o 46064 functhinclem1 46322 |
Copyright terms: Public domain | W3C validator |