![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7567 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1451 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 (class class class)co 7409 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: fvproj 8120 seqomlem1 8450 seqomlem4 8453 oav 8511 omv 8512 oev 8514 iunfictbso 10109 fin23lem12 10326 axdc4lem 10450 axcclem 10452 addpipq2 10931 mulpipq2 10934 subval 11451 divval 11874 cnref1o 12969 ixxval 13332 fzval 13486 modval 13836 om2uzrdg 13921 uzrdgsuci 13925 axdc4uzlem 13948 seqval 13977 seqp1 13981 bcval 14264 cnrecnv 15112 risefacval 15952 fallfacval 15953 gcdval 16437 lcmval 16529 imasvscafn 17483 imasvscaval 17484 grpsubval 18870 isghm 19092 lactghmga 19273 efgmval 19580 efgtval 19591 frgpup3lem 19645 dvrval 20217 frlmval 21303 psrvsca 21510 mat1comp 21942 mamulid 21943 mamurid 21944 madufval 22139 xkococnlem 23163 xkococn 23164 cnextval 23565 dscmet 24081 cncfval 24404 htpycom 24492 htpyid 24493 phtpycom 24504 phtpyid 24505 ehl1eudisval 24938 logbval 26271 addsval 27446 subsval 27532 mulsval 27565 divsval 27637 isismt 27785 clwwlknon 29343 clwwlk0on0 29345 grpodivval 29788 ipval 29956 lnoval 30005 nmoofval 30015 bloval 30034 0ofval 30040 ajfval 30062 hvsubval 30269 hosmval 30988 hommval 30989 hodmval 30990 hfsmval 30991 hfmmval 30992 kbfval 31205 opsqrlem3 31395 dpval 32056 xdivval 32085 smatrcl 32776 smatlem 32777 mdetpmtr12 32805 pstmfval 32876 sxval 33188 ismbfm 33249 dya2iocival 33272 sitgval 33331 sitmval 33348 oddpwdcv 33354 ballotlemgval 33522 vtsval 33649 cvmlift2lem4 34297 icoreval 36234 metf1o 36623 heiborlem3 36681 heiborlem6 36684 heiborlem8 36686 heibor 36689 ldualvs 38007 tendopl 39647 cdlemkuu 39766 dvavsca 39888 dvhvaddval 39961 dvhvscaval 39970 hlhilipval 40824 resubval 41240 prjspnval 41358 rrx2xpref1o 47404 functhinclem1 47661 |
Copyright terms: Public domain | W3C validator |