| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7528 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: fvproj 8090 seqomlem1 8395 seqomlem4 8398 oav 8452 omv 8453 oev 8455 iunfictbso 10043 fin23lem12 10260 axdc4lem 10384 axcclem 10386 addpipq2 10865 mulpipq2 10868 subval 11388 divval 11815 cnref1o 12920 ixxval 13290 fzval 13446 modval 13809 om2uzrdg 13897 uzrdgsuci 13901 axdc4uzlem 13924 seqval 13953 seqp1 13957 bcval 14245 cnrecnv 15107 risefacval 15950 fallfacval 15951 gcdval 16442 lcmval 16538 imasvscafn 17476 imasvscaval 17477 grpsubval 18899 isghmOLD 19130 lactghmga 19319 efgmval 19626 efgtval 19637 frgpup3lem 19691 dvrval 20323 frlmval 21690 psrvsca 21891 mat1comp 22360 mamulid 22361 mamurid 22362 madufval 22557 xkococnlem 23579 xkococn 23580 cnextval 23981 dscmet 24493 cncfval 24814 htpycom 24908 htpyid 24909 phtpycom 24920 phtpyid 24921 ehl1eudisval 25354 logbval 26709 addsval 27909 subsval 28004 mulsval 28052 divsval 28132 seqsval 28222 om2noseqrdg 28238 noseqrdgsuc 28242 seqsp1 28245 expsval 28352 isismt 28514 clwwlknon 30069 clwwlk0on0 30071 grpodivval 30514 ipval 30682 lnoval 30731 nmoofval 30741 bloval 30760 0ofval 30766 ajfval 30788 hvsubval 30995 hosmval 31714 hommval 31715 hodmval 31716 hfsmval 31717 hfmmval 31718 kbfval 31931 opsqrlem3 32121 dpval 32860 xdivval 32889 smatrcl 33779 smatlem 33780 mdetpmtr12 33808 pstmfval 33879 sxval 34173 ismbfm 34234 dya2iocival 34257 sitgval 34316 sitmval 34333 oddpwdcv 34339 ballotlemgval 34508 vtsval 34621 cvmlift2lem4 35286 icoreval 37334 metf1o 37742 heiborlem3 37800 heiborlem6 37803 heiborlem8 37805 heibor 37808 ldualvs 39123 tendopl 40763 cdlemkuu 40882 dvavsca 41004 dvhvaddval 41077 dvhvscaval 41086 hlhilipval 41936 resubval 42348 redivvald 42423 prjspnval 42597 rrx2xpref1o 48700 fuco22natlem 49327 functhinclem1 49426 |
| Copyright terms: Public domain | W3C validator |