![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7591 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1449 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 (class class class)co 7430 ∈ cmpo 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 |
This theorem is referenced by: fvproj 8157 seqomlem1 8488 seqomlem4 8491 oav 8547 omv 8548 oev 8550 iunfictbso 10151 fin23lem12 10368 axdc4lem 10492 axcclem 10494 addpipq2 10973 mulpipq2 10976 subval 11496 divval 11921 cnref1o 13024 ixxval 13391 fzval 13545 modval 13907 om2uzrdg 13993 uzrdgsuci 13997 axdc4uzlem 14020 seqval 14049 seqp1 14053 bcval 14339 cnrecnv 15200 risefacval 16040 fallfacval 16041 gcdval 16529 lcmval 16625 imasvscafn 17583 imasvscaval 17584 grpsubval 19015 isghmOLD 19246 lactghmga 19437 efgmval 19744 efgtval 19755 frgpup3lem 19809 dvrval 20419 frlmval 21785 psrvsca 21986 mat1comp 22461 mamulid 22462 mamurid 22463 madufval 22658 xkococnlem 23682 xkococn 23683 cnextval 24084 dscmet 24600 cncfval 24927 htpycom 25021 htpyid 25022 phtpycom 25033 phtpyid 25034 ehl1eudisval 25468 logbval 26823 addsval 28009 subsval 28104 mulsval 28149 divsval 28229 seqsval 28308 om2noseqrdg 28324 noseqrdgsuc 28328 seqsp1 28331 expsval 28422 isismt 28556 clwwlknon 30118 clwwlk0on0 30120 grpodivval 30563 ipval 30731 lnoval 30780 nmoofval 30790 bloval 30809 0ofval 30815 ajfval 30837 hvsubval 31044 hosmval 31763 hommval 31764 hodmval 31765 hfsmval 31766 hfmmval 31767 kbfval 31980 opsqrlem3 32170 dpval 32856 xdivval 32885 smatrcl 33756 smatlem 33757 mdetpmtr12 33785 pstmfval 33856 sxval 34170 ismbfm 34231 dya2iocival 34254 sitgval 34313 sitmval 34330 oddpwdcv 34336 ballotlemgval 34504 vtsval 34630 cvmlift2lem4 35290 icoreval 37335 metf1o 37741 heiborlem3 37799 heiborlem6 37802 heiborlem8 37804 heibor 37807 ldualvs 39118 tendopl 40758 cdlemkuu 40877 dvavsca 40999 dvhvaddval 41072 dvhvscaval 41081 hlhilipval 41935 resubval 42373 prjspnval 42602 rrx2xpref1o 48567 functhinclem1 48840 |
Copyright terms: Public domain | W3C validator |