| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7548 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: fvproj 8113 seqomlem1 8418 seqomlem4 8421 oav 8475 omv 8476 oev 8478 iunfictbso 10067 fin23lem12 10284 axdc4lem 10408 axcclem 10410 addpipq2 10889 mulpipq2 10892 subval 11412 divval 11839 cnref1o 12944 ixxval 13314 fzval 13470 modval 13833 om2uzrdg 13921 uzrdgsuci 13925 axdc4uzlem 13948 seqval 13977 seqp1 13981 bcval 14269 cnrecnv 15131 risefacval 15974 fallfacval 15975 gcdval 16466 lcmval 16562 imasvscafn 17500 imasvscaval 17501 grpsubval 18917 isghmOLD 19148 lactghmga 19335 efgmval 19642 efgtval 19653 frgpup3lem 19707 dvrval 20312 frlmval 21657 psrvsca 21858 mat1comp 22327 mamulid 22328 mamurid 22329 madufval 22524 xkococnlem 23546 xkococn 23547 cnextval 23948 dscmet 24460 cncfval 24781 htpycom 24875 htpyid 24876 phtpycom 24887 phtpyid 24888 ehl1eudisval 25321 logbval 26676 addsval 27869 subsval 27964 mulsval 28012 divsval 28092 seqsval 28182 om2noseqrdg 28198 noseqrdgsuc 28202 seqsp1 28205 expsval 28311 isismt 28461 clwwlknon 30019 clwwlk0on0 30021 grpodivval 30464 ipval 30632 lnoval 30681 nmoofval 30691 bloval 30710 0ofval 30716 ajfval 30738 hvsubval 30945 hosmval 31664 hommval 31665 hodmval 31666 hfsmval 31667 hfmmval 31668 kbfval 31881 opsqrlem3 32071 dpval 32810 xdivval 32839 smatrcl 33786 smatlem 33787 mdetpmtr12 33815 pstmfval 33886 sxval 34180 ismbfm 34241 dya2iocival 34264 sitgval 34323 sitmval 34340 oddpwdcv 34346 ballotlemgval 34515 vtsval 34628 cvmlift2lem4 35293 icoreval 37341 metf1o 37749 heiborlem3 37807 heiborlem6 37810 heiborlem8 37812 heibor 37815 ldualvs 39130 tendopl 40770 cdlemkuu 40889 dvavsca 41011 dvhvaddval 41084 dvhvscaval 41093 hlhilipval 41943 resubval 42355 redivvald 42430 prjspnval 42604 rrx2xpref1o 48707 fuco22natlem 49334 functhinclem1 49433 |
| Copyright terms: Public domain | W3C validator |