| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7505 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: fvproj 8064 seqomlem1 8369 seqomlem4 8372 oav 8426 omv 8427 oev 8429 iunfictbso 10005 fin23lem12 10222 axdc4lem 10346 axcclem 10348 addpipq2 10827 mulpipq2 10830 subval 11351 divval 11778 cnref1o 12883 ixxval 13253 fzval 13409 modval 13775 om2uzrdg 13863 uzrdgsuci 13867 axdc4uzlem 13890 seqval 13919 seqp1 13923 bcval 14211 cnrecnv 15072 risefacval 15915 fallfacval 15916 gcdval 16407 lcmval 16503 imasvscafn 17441 imasvscaval 17442 grpsubval 18898 isghmOLD 19128 lactghmga 19317 efgmval 19624 efgtval 19635 frgpup3lem 19689 dvrval 20321 frlmval 21685 psrvsca 21886 mat1comp 22355 mamulid 22356 mamurid 22357 madufval 22552 xkococnlem 23574 xkococn 23575 cnextval 23976 dscmet 24487 cncfval 24808 htpycom 24902 htpyid 24903 phtpycom 24914 phtpyid 24915 ehl1eudisval 25348 logbval 26703 addsval 27905 subsval 28000 mulsval 28048 divsval 28128 seqsval 28218 om2noseqrdg 28234 noseqrdgsuc 28238 seqsp1 28241 expsval 28348 isismt 28512 clwwlknon 30070 clwwlk0on0 30072 grpodivval 30515 ipval 30683 lnoval 30732 nmoofval 30742 bloval 30761 0ofval 30767 ajfval 30789 hvsubval 30996 hosmval 31715 hommval 31716 hodmval 31717 hfsmval 31718 hfmmval 31719 kbfval 31932 opsqrlem3 32122 dpval 32870 xdivval 32899 smatrcl 33809 smatlem 33810 mdetpmtr12 33838 pstmfval 33909 sxval 34203 ismbfm 34264 dya2iocival 34286 sitgval 34345 sitmval 34362 oddpwdcv 34368 ballotlemgval 34537 vtsval 34650 cvmlift2lem4 35350 icoreval 37395 metf1o 37803 heiborlem3 37861 heiborlem6 37864 heiborlem8 37866 heibor 37869 ldualvs 39184 tendopl 40823 cdlemkuu 40942 dvavsca 41064 dvhvaddval 41137 dvhvscaval 41146 hlhilipval 41996 resubval 42408 redivvald 42483 prjspnval 42657 rrx2xpref1o 48758 fuco22natlem 49385 functhinclem1 49484 |
| Copyright terms: Public domain | W3C validator |