![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7584 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1446 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 (class class class)co 7423 ∈ cmpo 7425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3776 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 |
This theorem is referenced by: fvproj 8147 seqomlem1 8479 seqomlem4 8482 oav 8540 omv 8541 oev 8543 iunfictbso 10153 fin23lem12 10370 axdc4lem 10494 axcclem 10496 addpipq2 10975 mulpipq2 10978 subval 11497 divval 11921 cnref1o 13016 ixxval 13381 fzval 13535 modval 13886 om2uzrdg 13971 uzrdgsuci 13975 axdc4uzlem 13998 seqval 14027 seqp1 14031 bcval 14316 cnrecnv 15165 risefacval 16005 fallfacval 16006 gcdval 16491 lcmval 16588 imasvscafn 17547 imasvscaval 17548 grpsubval 18975 isghmOLD 19205 lactghmga 19398 efgmval 19705 efgtval 19716 frgpup3lem 19770 dvrval 20380 frlmval 21738 psrvsca 21950 mat1comp 22425 mamulid 22426 mamurid 22427 madufval 22622 xkococnlem 23646 xkococn 23647 cnextval 24048 dscmet 24564 cncfval 24891 htpycom 24985 htpyid 24986 phtpycom 24997 phtpyid 24998 ehl1eudisval 25432 logbval 26786 addsval 27968 subsval 28059 mulsval 28102 divsval 28182 seqsval 28254 om2noseqrdg 28270 noseqrdgsuc 28274 seqsp1 28277 isismt 28453 clwwlknon 30015 clwwlk0on0 30017 grpodivval 30460 ipval 30628 lnoval 30677 nmoofval 30687 bloval 30706 0ofval 30712 ajfval 30734 hvsubval 30941 hosmval 31660 hommval 31661 hodmval 31662 hfsmval 31663 hfmmval 31664 kbfval 31877 opsqrlem3 32067 dpval 32740 xdivval 32769 smatrcl 33567 smatlem 33568 mdetpmtr12 33596 pstmfval 33667 sxval 33979 ismbfm 34040 dya2iocival 34063 sitgval 34122 sitmval 34139 oddpwdcv 34145 ballotlemgval 34313 vtsval 34439 cvmlift2lem4 35086 icoreval 37008 metf1o 37404 heiborlem3 37462 heiborlem6 37465 heiborlem8 37467 heibor 37470 ldualvs 38783 tendopl 40423 cdlemkuu 40542 dvavsca 40664 dvhvaddval 40737 dvhvscaval 40746 hlhilipval 41600 resubval 42089 prjspnval 42207 rrx2xpref1o 48043 functhinclem1 48299 |
Copyright terms: Public domain | W3C validator |