| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| ovmpo.4 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
| 2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 2, 3, 4 | ovmpog 7551 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 6 | 1, 5 | mp3an3 1452 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 (class class class)co 7390 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: fvproj 8116 seqomlem1 8421 seqomlem4 8424 oav 8478 omv 8479 oev 8481 iunfictbso 10074 fin23lem12 10291 axdc4lem 10415 axcclem 10417 addpipq2 10896 mulpipq2 10899 subval 11419 divval 11846 cnref1o 12951 ixxval 13321 fzval 13477 modval 13840 om2uzrdg 13928 uzrdgsuci 13932 axdc4uzlem 13955 seqval 13984 seqp1 13988 bcval 14276 cnrecnv 15138 risefacval 15981 fallfacval 15982 gcdval 16473 lcmval 16569 imasvscafn 17507 imasvscaval 17508 grpsubval 18924 isghmOLD 19155 lactghmga 19342 efgmval 19649 efgtval 19660 frgpup3lem 19714 dvrval 20319 frlmval 21664 psrvsca 21865 mat1comp 22334 mamulid 22335 mamurid 22336 madufval 22531 xkococnlem 23553 xkococn 23554 cnextval 23955 dscmet 24467 cncfval 24788 htpycom 24882 htpyid 24883 phtpycom 24894 phtpyid 24895 ehl1eudisval 25328 logbval 26683 addsval 27876 subsval 27971 mulsval 28019 divsval 28099 seqsval 28189 om2noseqrdg 28205 noseqrdgsuc 28209 seqsp1 28212 expsval 28318 isismt 28468 clwwlknon 30026 clwwlk0on0 30028 grpodivval 30471 ipval 30639 lnoval 30688 nmoofval 30698 bloval 30717 0ofval 30723 ajfval 30745 hvsubval 30952 hosmval 31671 hommval 31672 hodmval 31673 hfsmval 31674 hfmmval 31675 kbfval 31888 opsqrlem3 32078 dpval 32817 xdivval 32846 smatrcl 33793 smatlem 33794 mdetpmtr12 33822 pstmfval 33893 sxval 34187 ismbfm 34248 dya2iocival 34271 sitgval 34330 sitmval 34347 oddpwdcv 34353 ballotlemgval 34522 vtsval 34635 cvmlift2lem4 35300 icoreval 37348 metf1o 37756 heiborlem3 37814 heiborlem6 37817 heiborlem8 37819 heibor 37822 ldualvs 39137 tendopl 40777 cdlemkuu 40896 dvavsca 41018 dvhvaddval 41091 dvhvscaval 41100 hlhilipval 41950 resubval 42362 redivvald 42437 prjspnval 42611 rrx2xpref1o 48711 fuco22natlem 49338 functhinclem1 49437 |
| Copyright terms: Public domain | W3C validator |