Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ |
2 | | cbvoprab2.1 |
. . . . . . 7
⊢
Ⅎ𝑤𝜑 |
3 | 1, 2 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
4 | 3 | nfex 2318 |
. . . . 5
⊢
Ⅎ𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) |
5 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ |
6 | | cbvoprab2.2 |
. . . . . . 7
⊢
Ⅎ𝑦𝜓 |
7 | 5, 6 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑦(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓) |
8 | 7 | nfex 2318 |
. . . . 5
⊢
Ⅎ𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓) |
9 | | opeq2 4875 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩) |
10 | 9 | opeq1d 4880 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩) |
11 | 10 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩)) |
12 | | cbvoprab2.3 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝜑 ↔ 𝜓)) |
13 | 11, 12 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = 𝑤 → ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))) |
14 | 13 | exbidv 1925 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))) |
15 | 4, 8, 14 | cbvexv1 2339 |
. . . 4
⊢
(∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)) |
16 | 15 | exbii 1851 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)) |
17 | 16 | abbii 2803 |
. 2
⊢ {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑥∃𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)} |
18 | | df-oprab 7413 |
. 2
⊢
{⟨⟨𝑥,
𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
19 | | df-oprab 7413 |
. 2
⊢
{⟨⟨𝑥,
𝑤⟩, 𝑧⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑥∃𝑤∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)} |
20 | 17, 18, 19 | 3eqtr4i 2771 |
1
⊢
{⟨⟨𝑥,
𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓} |