MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frind Structured version   Visualization version   GIF version

Theorem frind 9710
Description: A subclass of a well-founded class 𝐴 with the property that whenever it contains all predecessors of an element of 𝐴 it also contains that element, is equal to 𝐴. Compare wfi 6325 and tfi 7832, which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frind (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem frind
StepHypRef Expression
1 ssdif0 4332 . . . . . . 7 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2973 . . . . . 6 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 difss 4102 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
4 frmin 9709 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)
5 eldif 3927 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
65anbi1i 624 . . . . . . . . . . . 12 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ ((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅))
7 anass 468 . . . . . . . . . . . 12 (((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)))
8 ancom 460 . . . . . . . . . . . . . 14 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵))
9 indif2 4247 . . . . . . . . . . . . . . . . . 18 ((𝑅 “ {𝑦}) ∩ (𝐴𝐵)) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
10 df-pred 6277 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝐴𝐵) ∩ (𝑅 “ {𝑦}))
11 incom 4175 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
1210, 11eqtri 2753 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
13 df-pred 6277 . . . . . . . . . . . . . . . . . . . 20 Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (𝑅 “ {𝑦}))
14 incom 4175 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1513, 14eqtri 2753 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, 𝐴, 𝑦) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1615difeq1i 4088 . . . . . . . . . . . . . . . . . 18 (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
179, 12, 163eqtr4i 2763 . . . . . . . . . . . . . . . . 17 Pred(𝑅, (𝐴𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵)
1817eqeq1i 2735 . . . . . . . . . . . . . . . 16 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
19 ssdif0 4332 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
2018, 19bitr4i 278 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
2120anbi1i 624 . . . . . . . . . . . . . 14 ((Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
228, 21bitri 275 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
2322anbi2i 623 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
246, 7, 233bitri 297 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
2524rexbii2 3073 . . . . . . . . . 10 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
26 rexanali 3085 . . . . . . . . . 10 (∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2725, 26bitri 275 . . . . . . . . 9 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
284, 27sylib 218 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2928ex 412 . . . . . . 7 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
303, 29mpani 696 . . . . . 6 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ((𝐴𝐵) ≠ ∅ → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
312, 30biimtrid 242 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (¬ 𝐴𝐵 → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
3231con4d 115 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵) → 𝐴𝐵))
3332imp 406 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴𝐵)
3433adantrl 716 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴𝐵)
35 simprl 770 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐵𝐴)
3634, 35eqssd 3967 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592   Fr wfr 5591   Se wse 5592  ccnv 5640  cima 5644  Predcpred 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-ttrcl 9668
This theorem is referenced by:  frinsg  9711
  Copyright terms: Public domain W3C validator