Proof of Theorem frind
Step | Hyp | Ref
| Expression |
1 | | ssdif0 4264 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
2 | 1 | necon3bbii 2998 |
. . . . . 6
⊢ (¬
𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
3 | | difss 4039 |
. . . . . . 7
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
4 | | frmin 33347 |
. . . . . . . . 9
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) |
5 | | eldif 3870 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
6 | 5 | anbi1i 626 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (𝐴 ∖ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅)) |
7 | | anass 472 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (𝑦 ∈ 𝐴 ∧ (¬ 𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅))) |
8 | | ancom 464 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ∧ ¬ 𝑦 ∈ 𝐵)) |
9 | | indif2 4177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) = (((◡𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵) |
10 | | df-pred 6131 |
. . . . . . . . . . . . . . . . . . 19
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑦})) |
11 | | incom 4108 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑦})) = ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) |
12 | 10, 11 | eqtri 2781 |
. . . . . . . . . . . . . . . . . 18
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ((◡𝑅 “ {𝑦}) ∩ (𝐴 ∖ 𝐵)) |
13 | | df-pred 6131 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (◡𝑅 “ {𝑦})) |
14 | | incom 4108 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∩ (◡𝑅 “ {𝑦})) = ((◡𝑅 “ {𝑦}) ∩ 𝐴) |
15 | 13, 14 | eqtri 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢
Pred(𝑅, 𝐴, 𝑦) = ((◡𝑅 “ {𝑦}) ∩ 𝐴) |
16 | 15 | difeq1i 4026 |
. . . . . . . . . . . . . . . . . 18
⊢
(Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((◡𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵) |
17 | 9, 12, 16 | 3eqtr4i 2791 |
. . . . . . . . . . . . . . . . 17
⊢
Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) |
18 | 17 | eqeq1i 2763 |
. . . . . . . . . . . . . . . 16
⊢
(Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅) |
19 | | ssdif0 4264 |
. . . . . . . . . . . . . . . 16
⊢
(Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅) |
20 | 18, 19 | bitr4i 281 |
. . . . . . . . . . . . . . 15
⊢
(Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
21 | 20 | anbi1i 626 |
. . . . . . . . . . . . . 14
⊢
((Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ∧ ¬ 𝑦 ∈ 𝐵) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵)) |
22 | 8, 21 | bitri 278 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵)) |
23 | 22 | anbi2i 625 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ (¬ 𝑦 ∈ 𝐵 ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅)) ↔ (𝑦 ∈ 𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵))) |
24 | 6, 7, 23 | 3bitri 300 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐴 ∖ 𝐵) ∧ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅) ↔ (𝑦 ∈ 𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵))) |
25 | 24 | rexbii2 3173 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
(𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵)) |
26 | | rexanali 3189 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦 ∈ 𝐵) ↔ ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
27 | 25, 26 | bitri 278 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
(𝐴 ∖ 𝐵)Pred(𝑅, (𝐴 ∖ 𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
28 | 4, 27 | sylib 221 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅)) → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) |
29 | 28 | ex 416 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
30 | 3, 29 | mpani 695 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ((𝐴 ∖ 𝐵) ≠ ∅ → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
31 | 2, 30 | syl5bi 245 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (¬ 𝐴 ⊆ 𝐵 → ¬ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) |
32 | 31 | con4d 115 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵) → 𝐴 ⊆ 𝐵)) |
33 | 32 | imp 410 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 ⊆ 𝐵) |
34 | 33 | adantrl 715 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 ⊆ 𝐵) |
35 | | simprl 770 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐵 ⊆ 𝐴) |
36 | 34, 35 | eqssd 3911 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) |