MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frind Structured version   Visualization version   GIF version

Theorem frind 9679
Description: A subclass of a well-founded class 𝐴 with the property that whenever it contains all predecessors of an element of 𝐴 it also contains that element, is equal to 𝐴. Compare wfi 6310 and tfi 7809, which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frind (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem frind
StepHypRef Expression
1 ssdif0 4325 . . . . . . 7 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2972 . . . . . 6 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 difss 4095 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
4 frmin 9678 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)
5 eldif 3921 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
65anbi1i 624 . . . . . . . . . . . 12 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ ((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅))
7 anass 468 . . . . . . . . . . . 12 (((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)))
8 ancom 460 . . . . . . . . . . . . . 14 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵))
9 indif2 4240 . . . . . . . . . . . . . . . . . 18 ((𝑅 “ {𝑦}) ∩ (𝐴𝐵)) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
10 df-pred 6262 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝐴𝐵) ∩ (𝑅 “ {𝑦}))
11 incom 4168 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
1210, 11eqtri 2752 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
13 df-pred 6262 . . . . . . . . . . . . . . . . . . . 20 Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (𝑅 “ {𝑦}))
14 incom 4168 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1513, 14eqtri 2752 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, 𝐴, 𝑦) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1615difeq1i 4081 . . . . . . . . . . . . . . . . . 18 (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
179, 12, 163eqtr4i 2762 . . . . . . . . . . . . . . . . 17 Pred(𝑅, (𝐴𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵)
1817eqeq1i 2734 . . . . . . . . . . . . . . . 16 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
19 ssdif0 4325 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
2018, 19bitr4i 278 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
2120anbi1i 624 . . . . . . . . . . . . . 14 ((Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
228, 21bitri 275 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
2322anbi2i 623 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
246, 7, 233bitri 297 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
2524rexbii2 3072 . . . . . . . . . 10 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
26 rexanali 3084 . . . . . . . . . 10 (∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2725, 26bitri 275 . . . . . . . . 9 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
284, 27sylib 218 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2928ex 412 . . . . . . 7 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
303, 29mpani 696 . . . . . 6 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ((𝐴𝐵) ≠ ∅ → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
312, 30biimtrid 242 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (¬ 𝐴𝐵 → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
3231con4d 115 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵) → 𝐴𝐵))
3332imp 406 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴𝐵)
3433adantrl 716 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴𝐵)
35 simprl 770 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐵𝐴)
3634, 35eqssd 3961 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  cin 3910  wss 3911  c0 4292  {csn 4585   Fr wfr 5581   Se wse 5582  ccnv 5630  cima 5634  Predcpred 6261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-ttrcl 9637
This theorem is referenced by:  frinsg  9680
  Copyright terms: Public domain W3C validator