MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frind Structured version   Visualization version   GIF version

Theorem frind 9646
Description: A subclass of a well-founded class 𝐴 with the property that whenever it contains all predecessors of an element of 𝐴 it also contains that element, is equal to 𝐴. Compare wfi 6297 and tfi 7786, which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frind (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem frind
StepHypRef Expression
1 ssdif0 4317 . . . . . . 7 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2972 . . . . . 6 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 difss 4087 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
4 frmin 9645 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)
5 eldif 3913 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
65anbi1i 624 . . . . . . . . . . . 12 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ ((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅))
7 anass 468 . . . . . . . . . . . 12 (((𝑦𝐴 ∧ ¬ 𝑦𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)))
8 ancom 460 . . . . . . . . . . . . . 14 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵))
9 indif2 4232 . . . . . . . . . . . . . . . . . 18 ((𝑅 “ {𝑦}) ∩ (𝐴𝐵)) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
10 df-pred 6249 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝐴𝐵) ∩ (𝑅 “ {𝑦}))
11 incom 4160 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
1210, 11eqtri 2752 . . . . . . . . . . . . . . . . . 18 Pred(𝑅, (𝐴𝐵), 𝑦) = ((𝑅 “ {𝑦}) ∩ (𝐴𝐵))
13 df-pred 6249 . . . . . . . . . . . . . . . . . . . 20 Pred(𝑅, 𝐴, 𝑦) = (𝐴 ∩ (𝑅 “ {𝑦}))
14 incom 4160 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∩ (𝑅 “ {𝑦})) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1513, 14eqtri 2752 . . . . . . . . . . . . . . . . . . 19 Pred(𝑅, 𝐴, 𝑦) = ((𝑅 “ {𝑦}) ∩ 𝐴)
1615difeq1i 4073 . . . . . . . . . . . . . . . . . 18 (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = (((𝑅 “ {𝑦}) ∩ 𝐴) ∖ 𝐵)
179, 12, 163eqtr4i 2762 . . . . . . . . . . . . . . . . 17 Pred(𝑅, (𝐴𝐵), 𝑦) = (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵)
1817eqeq1i 2734 . . . . . . . . . . . . . . . 16 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
19 ssdif0 4317 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ (Pred(𝑅, 𝐴, 𝑦) ∖ 𝐵) = ∅)
2018, 19bitr4i 278 . . . . . . . . . . . . . . 15 (Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
2120anbi1i 624 . . . . . . . . . . . . . 14 ((Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ∧ ¬ 𝑦𝐵) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
228, 21bitri 275 . . . . . . . . . . . . 13 ((¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
2322anbi2i 623 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ (¬ 𝑦𝐵 ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅)) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
246, 7, 233bitri 297 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴𝐵) ∧ Pred(𝑅, (𝐴𝐵), 𝑦) = ∅) ↔ (𝑦𝐴 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵)))
2524rexbii2 3072 . . . . . . . . . 10 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵))
26 rexanali 3083 . . . . . . . . . 10 (∃𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ ¬ 𝑦𝐵) ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2725, 26bitri 275 . . . . . . . . 9 (∃𝑦 ∈ (𝐴𝐵)Pred(𝑅, (𝐴𝐵), 𝑦) = ∅ ↔ ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
284, 27sylib 218 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅)) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))
2928ex 412 . . . . . . 7 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
303, 29mpani 696 . . . . . 6 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ((𝐴𝐵) ≠ ∅ → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
312, 30biimtrid 242 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (¬ 𝐴𝐵 → ¬ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)))
3231con4d 115 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵) → 𝐴𝐵))
3332imp 406 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴𝐵)
3433adantrl 716 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴𝐵)
35 simprl 770 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐵𝐴)
3634, 35eqssd 3953 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  cin 3902  wss 3903  c0 4284  {csn 4577   Fr wfr 5569   Se wse 5570  ccnv 5618  cima 5622  Predcpred 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-ttrcl 9604
This theorem is referenced by:  frinsg  9647
  Copyright terms: Public domain W3C validator