MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predprc Structured version   Visualization version   GIF version

Theorem predprc 6314
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predprc 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)

Proof of Theorem predprc
StepHypRef Expression
1 df-pred 6277 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 snprc 4684 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
32biimpi 216 . . . . . 6 𝑋 ∈ V → {𝑋} = ∅)
43imaeq2d 6034 . . . . 5 𝑋 ∈ V → (𝑅 “ {𝑋}) = (𝑅 “ ∅))
5 ima0 6051 . . . . 5 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2781 . . . 4 𝑋 ∈ V → (𝑅 “ {𝑋}) = ∅)
76ineq2d 4186 . . 3 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ∅))
8 in0 4361 . . 3 (𝐴 ∩ ∅) = ∅
97, 8eqtrdi 2781 . 2 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ∅)
101, 9eqtrid 2777 1 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  c0 4299  {csn 4592  ccnv 5640  cima 5644  Predcpred 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277
This theorem is referenced by:  predres  6315
  Copyright terms: Public domain W3C validator