| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version | ||
| Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6301 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | snprc 4697 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
| 4 | 3 | imaeq2d 6058 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
| 5 | ima0 6075 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2785 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
| 7 | 6 | ineq2d 4200 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
| 8 | in0 4375 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2785 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
| 10 | 1, 9 | eqtrid 2781 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ∅c0 4313 {csn 4606 ◡ccnv 5664 “ cima 5668 Predcpred 6300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 |
| This theorem is referenced by: predres 6339 |
| Copyright terms: Public domain | W3C validator |