| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version | ||
| Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6274 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | snprc 4681 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
| 4 | 3 | imaeq2d 6031 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
| 5 | ima0 6048 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
| 7 | 6 | ineq2d 4183 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
| 8 | in0 4358 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2780 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
| 10 | 1, 9 | eqtrid 2776 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 {csn 4589 ◡ccnv 5637 “ cima 5641 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: predres 6312 |
| Copyright terms: Public domain | W3C validator |