![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version |
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
Ref | Expression |
---|---|
predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6332 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | snprc 4742 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
3 | 2 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
4 | 3 | imaeq2d 6089 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
5 | ima0 6106 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
7 | 6 | ineq2d 4241 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
8 | in0 4418 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
9 | 7, 8 | eqtrdi 2796 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
10 | 1, 9 | eqtrid 2792 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ∅c0 4352 {csn 4648 ◡ccnv 5699 “ cima 5703 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: predres 6371 |
Copyright terms: Public domain | W3C validator |