MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predprc Structured version   Visualization version   GIF version

Theorem predprc 6277
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predprc 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)

Proof of Theorem predprc
StepHypRef Expression
1 df-pred 6238 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 snprc 4665 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
32biimpi 215 . . . . . 6 𝑋 ∈ V → {𝑋} = ∅)
43imaeq2d 5999 . . . . 5 𝑋 ∈ V → (𝑅 “ {𝑋}) = (𝑅 “ ∅))
5 ima0 6015 . . . . 5 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2792 . . . 4 𝑋 ∈ V → (𝑅 “ {𝑋}) = ∅)
76ineq2d 4159 . . 3 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ∅))
8 in0 4338 . . 3 (𝐴 ∩ ∅) = ∅
97, 8eqtrdi 2792 . 2 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ∅)
101, 9eqtrid 2788 1 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cin 3897  c0 4269  {csn 4573  ccnv 5619  cima 5623  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238
This theorem is referenced by:  predres  6278
  Copyright terms: Public domain W3C validator