MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predprc Structured version   Visualization version   GIF version

Theorem predprc 6292
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predprc 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)

Proof of Theorem predprc
StepHypRef Expression
1 df-pred 6255 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 snprc 4671 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
32biimpi 216 . . . . . 6 𝑋 ∈ V → {𝑋} = ∅)
43imaeq2d 6015 . . . . 5 𝑋 ∈ V → (𝑅 “ {𝑋}) = (𝑅 “ ∅))
5 ima0 6032 . . . . 5 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2784 . . . 4 𝑋 ∈ V → (𝑅 “ {𝑋}) = ∅)
76ineq2d 4169 . . 3 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ∅))
8 in0 4344 . . 3 (𝐴 ∩ ∅) = ∅
97, 8eqtrdi 2784 . 2 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ∅)
101, 9eqtrid 2780 1 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  c0 4282  {csn 4577  ccnv 5620  cima 5624  Predcpred 6254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255
This theorem is referenced by:  predres  6293
  Copyright terms: Public domain W3C validator