Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version |
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
Ref | Expression |
---|---|
predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6238 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | snprc 4665 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
3 | 2 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
4 | 3 | imaeq2d 5999 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
5 | ima0 6015 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2792 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
7 | 6 | ineq2d 4159 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
8 | in0 4338 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
9 | 7, 8 | eqtrdi 2792 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
10 | 1, 9 | eqtrid 2788 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3897 ∅c0 4269 {csn 4573 ◡ccnv 5619 “ cima 5623 Predcpred 6237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 |
This theorem is referenced by: predres 6278 |
Copyright terms: Public domain | W3C validator |