| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version | ||
| Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6248 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | snprc 4670 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
| 4 | 3 | imaeq2d 6009 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
| 5 | ima0 6026 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
| 7 | 6 | ineq2d 4170 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
| 8 | in0 4345 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2782 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
| 10 | 1, 9 | eqtrid 2778 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ∅c0 4283 {csn 4576 ◡ccnv 5615 “ cima 5619 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 |
| This theorem is referenced by: predres 6286 |
| Copyright terms: Public domain | W3C validator |