Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predprc | Structured version Visualization version GIF version |
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.) |
Ref | Expression |
---|---|
predprc | ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6200 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | snprc 4659 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V ↔ {𝑋} = ∅) | |
3 | 2 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → {𝑋} = ∅) |
4 | 3 | imaeq2d 5967 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = (◡𝑅 “ ∅)) |
5 | ima0 5983 | . . . . 5 ⊢ (◡𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (◡𝑅 “ {𝑋}) = ∅) |
7 | 6 | ineq2d 4152 | . . 3 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ∅)) |
8 | in0 4331 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
9 | 7, 8 | eqtrdi 2796 | . 2 ⊢ (¬ 𝑋 ∈ V → (𝐴 ∩ (◡𝑅 “ {𝑋})) = ∅) |
10 | 1, 9 | eqtrid 2792 | 1 ⊢ (¬ 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 ∅c0 4262 {csn 4567 ◡ccnv 5588 “ cima 5592 Predcpred 6199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 |
This theorem is referenced by: predres 6240 |
Copyright terms: Public domain | W3C validator |