MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predprc Structured version   Visualization version   GIF version

Theorem predprc 6338
Description: The predecessor of a proper class is empty. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predprc 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)

Proof of Theorem predprc
StepHypRef Expression
1 df-pred 6301 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 snprc 4697 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
32biimpi 216 . . . . . 6 𝑋 ∈ V → {𝑋} = ∅)
43imaeq2d 6058 . . . . 5 𝑋 ∈ V → (𝑅 “ {𝑋}) = (𝑅 “ ∅))
5 ima0 6075 . . . . 5 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2785 . . . 4 𝑋 ∈ V → (𝑅 “ {𝑋}) = ∅)
76ineq2d 4200 . . 3 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ∅))
8 in0 4375 . . 3 (𝐴 ∩ ∅) = ∅
97, 8eqtrdi 2785 . 2 𝑋 ∈ V → (𝐴 ∩ (𝑅 “ {𝑋})) = ∅)
101, 9eqtrid 2781 1 𝑋 ∈ V → Pred(𝑅, 𝐴, 𝑋) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  c0 4313  {csn 4606  ccnv 5664  cima 5668  Predcpred 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301
This theorem is referenced by:  predres  6339
  Copyright terms: Public domain W3C validator