MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredgg Structured version   Visualization version   GIF version

Theorem elpredgg 6188
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredgg ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpredgg
StepHypRef Expression
1 df-pred 6176 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4126 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elinisegg 5976 . . 3 ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑌𝑅𝑋))
43anbi2d 632 . 2 ((𝑋𝑉𝑌𝑊) → ((𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})) ↔ (𝑌𝐴𝑌𝑅𝑋)))
52, 4syl5bb 286 1 ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  {csn 4556   class class class wbr 5068  ccnv 5565  cima 5569  Predcpred 6175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-in 3888  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-br 5069  df-opab 5131  df-xp 5572  df-cnv 5574  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176
This theorem is referenced by:  elpredg  6189  elpredimg  6190  elpred  6192
  Copyright terms: Public domain W3C validator