MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredgg Structured version   Visualization version   GIF version

Theorem elpredgg 6262
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredgg ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpredgg
StepHypRef Expression
1 df-pred 6249 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4154 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elinisegg 6044 . . 3 ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑌𝑅𝑋))
43anbi2d 630 . 2 ((𝑋𝑉𝑌𝑊) → ((𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})) ↔ (𝑌𝐴𝑌𝑅𝑋)))
52, 4bitrid 283 1 ((𝑋𝑉𝑌𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4577   class class class wbr 5092  ccnv 5618  cima 5622  Predcpred 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249
This theorem is referenced by:  elpredg  6263  elpredimg  6264  elpred  6266
  Copyright terms: Public domain W3C validator