![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predrelss | Structured version Visualization version GIF version |
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.) |
Ref | Expression |
---|---|
predrelss | ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5873 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ◡𝑅 ⊆ ◡𝑆) | |
2 | imass1 6101 | . . 3 ⊢ (◡𝑅 ⊆ ◡𝑆 → (◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋})) | |
3 | sslin 4235 | . . 3 ⊢ ((◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋}) → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) |
5 | df-pred 6301 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
6 | df-pred 6301 | . 2 ⊢ Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑆 “ {𝑋})) | |
7 | 4, 5, 6 | 3sstr4g 4028 | 1 ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3948 ⊆ wss 3949 {csn 4629 ◡ccnv 5676 “ cima 5680 Predcpred 6300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 |
This theorem is referenced by: frmin 9744 frrlem16 9753 frr1 9754 |
Copyright terms: Public domain | W3C validator |