MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predrelss Structured version   Visualization version   GIF version

Theorem predrelss 6276
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predrelss (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predrelss
StepHypRef Expression
1 cnvss 5814 . . 3 (𝑅𝑆𝑅𝑆)
2 imass1 6039 . . 3 (𝑅𝑆 → (𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}))
3 sslin 4181 . . 3 ((𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}) → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
41, 2, 33syl 18 . 2 (𝑅𝑆 → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
5 df-pred 6238 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
6 df-pred 6238 . 2 Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (𝑆 “ {𝑋}))
74, 5, 63sstr4g 3977 1 (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3897  wss 3898  {csn 4573  ccnv 5619  cima 5623  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238
This theorem is referenced by:  frmin  9606  frrlem16  9615  frr1  9616
  Copyright terms: Public domain W3C validator