MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predrelss Structured version   Visualization version   GIF version

Theorem predrelss 6339
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predrelss (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predrelss
StepHypRef Expression
1 cnvss 5873 . . 3 (𝑅𝑆𝑅𝑆)
2 imass1 6101 . . 3 (𝑅𝑆 → (𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}))
3 sslin 4235 . . 3 ((𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}) → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
41, 2, 33syl 18 . 2 (𝑅𝑆 → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
5 df-pred 6301 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
6 df-pred 6301 . 2 Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (𝑆 “ {𝑋}))
74, 5, 63sstr4g 4028 1 (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3948  wss 3949  {csn 4629  ccnv 5676  cima 5680  Predcpred 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301
This theorem is referenced by:  frmin  9744  frrlem16  9753  frr1  9754
  Copyright terms: Public domain W3C validator