| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predrelss | Structured version Visualization version GIF version | ||
| Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| predrelss | ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5818 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ◡𝑅 ⊆ ◡𝑆) | |
| 2 | imass1 6056 | . . 3 ⊢ (◡𝑅 ⊆ ◡𝑆 → (◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋})) | |
| 3 | sslin 4192 | . . 3 ⊢ ((◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋}) → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) |
| 5 | df-pred 6255 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 6 | df-pred 6255 | . 2 ⊢ Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑆 “ {𝑋})) | |
| 7 | 4, 5, 6 | 3sstr4g 3984 | 1 ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ◡ccnv 5620 “ cima 5624 Predcpred 6254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 |
| This theorem is referenced by: frmin 9651 frrlem16 9660 frr1 9661 |
| Copyright terms: Public domain | W3C validator |