| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predrelss | Structured version Visualization version GIF version | ||
| Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| predrelss | ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5836 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ◡𝑅 ⊆ ◡𝑆) | |
| 2 | imass1 6072 | . . 3 ⊢ (◡𝑅 ⊆ ◡𝑆 → (◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋})) | |
| 3 | sslin 4206 | . . 3 ⊢ ((◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋}) → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) |
| 5 | df-pred 6274 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 6 | df-pred 6274 | . 2 ⊢ Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑆 “ {𝑋})) | |
| 7 | 4, 5, 6 | 3sstr4g 4000 | 1 ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ◡ccnv 5637 “ cima 5641 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: frmin 9702 frrlem16 9711 frr1 9712 |
| Copyright terms: Public domain | W3C validator |