MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predrelss Structured version   Visualization version   GIF version

Theorem predrelss 6369
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.)
Assertion
Ref Expression
predrelss (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predrelss
StepHypRef Expression
1 cnvss 5897 . . 3 (𝑅𝑆𝑅𝑆)
2 imass1 6131 . . 3 (𝑅𝑆 → (𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}))
3 sslin 4264 . . 3 ((𝑅 “ {𝑋}) ⊆ (𝑆 “ {𝑋}) → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
41, 2, 33syl 18 . 2 (𝑅𝑆 → (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (𝑆 “ {𝑋})))
5 df-pred 6332 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
6 df-pred 6332 . 2 Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (𝑆 “ {𝑋}))
74, 5, 63sstr4g 4054 1 (𝑅𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3975  wss 3976  {csn 4648  ccnv 5699  cima 5703  Predcpred 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332
This theorem is referenced by:  frmin  9818  frrlem16  9827  frr1  9828
  Copyright terms: Public domain W3C validator