Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predrelss | Structured version Visualization version GIF version |
Description: Subset carries from relation to predecessor class. (Contributed by Scott Fenton, 25-Nov-2024.) |
Ref | Expression |
---|---|
predrelss | ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5794 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ◡𝑅 ⊆ ◡𝑆) | |
2 | imass1 6019 | . . 3 ⊢ (◡𝑅 ⊆ ◡𝑆 → (◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋})) | |
3 | sslin 4174 | . . 3 ⊢ ((◡𝑅 “ {𝑋}) ⊆ (◡𝑆 “ {𝑋}) → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐴 ∩ (◡𝑆 “ {𝑋}))) |
5 | df-pred 6217 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
6 | df-pred 6217 | . 2 ⊢ Pred(𝑆, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑆 “ {𝑋})) | |
7 | 4, 5, 6 | 3sstr4g 3971 | 1 ⊢ (𝑅 ⊆ 𝑆 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3891 ⊆ wss 3892 {csn 4565 ◡ccnv 5599 “ cima 5603 Predcpred 6216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 |
This theorem is referenced by: frmin 9555 frrlem16 9564 frr1 9565 |
Copyright terms: Public domain | W3C validator |