Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
Ref | Expression |
---|---|
nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
Ref | Expression |
---|---|
nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6202 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5787 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
6 | 5 | nfsn 4643 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
7 | 4, 6 | nfima 5977 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
8 | 2, 7 | nfin 4150 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 1, 8 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ∩ cin 3886 {csn 4561 ◡ccnv 5588 “ cima 5592 Predcpred 6201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 |
This theorem is referenced by: nffrecs 8099 nfwrecsOLD 8133 nfwsuc 33812 nfwlim 33816 |
Copyright terms: Public domain | W3C validator |