| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
| nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
| nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
| Ref | Expression |
|---|---|
| nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6288 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5856 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
| 6 | 5 | nfsn 4681 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
| 7 | 4, 6 | nfima 6053 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
| 8 | 2, 7 | nfin 4197 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 1, 8 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2882 ∩ cin 3923 {csn 4599 ◡ccnv 5651 “ cima 5655 Predcpred 6287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-cnv 5660 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 |
| This theorem is referenced by: nffrecs 8277 nfwrecsOLD 8311 nfwsuc 35765 nfwlim 35769 |
| Copyright terms: Public domain | W3C validator |