| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
| nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
| nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
| Ref | Expression |
|---|---|
| nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6274 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5842 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
| 6 | 5 | nfsn 4671 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
| 7 | 4, 6 | nfima 6039 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
| 8 | 2, 7 | nfin 4187 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 1, 8 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∩ cin 3913 {csn 4589 ◡ccnv 5637 “ cima 5641 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: nffrecs 8262 nfwsuc 35806 nfwlim 35810 |
| Copyright terms: Public domain | W3C validator |