| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
| nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
| nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
| Ref | Expression |
|---|---|
| nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6248 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 4 | 3 | nfcnv 5818 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
| 5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
| 6 | 5 | nfsn 4660 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
| 7 | 4, 6 | nfima 6017 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
| 8 | 2, 7 | nfin 4174 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 1, 8 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ∩ cin 3901 {csn 4576 ◡ccnv 5615 “ cima 5619 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 |
| This theorem is referenced by: nffrecs 8213 nfwsuc 35858 nfwlim 35862 |
| Copyright terms: Public domain | W3C validator |