Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
Ref | Expression |
---|---|
nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
Ref | Expression |
---|---|
nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6126 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5718 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
6 | 5 | nfsn 4600 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
7 | 4, 6 | nfima 5909 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
8 | 2, 7 | nfin 4121 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 1, 8 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2899 ∩ cin 3857 {csn 4522 ◡ccnv 5523 “ cima 5527 Predcpred 6125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 |
This theorem is referenced by: nfwrecs 7959 nfwsuc 33366 nfwlim 33370 nffrecs 33381 |
Copyright terms: Public domain | W3C validator |