MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpred Structured version   Visualization version   GIF version

Theorem nfpred 6300
Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfpred.1 𝑥𝑅
nfpred.2 𝑥𝐴
nfpred.3 𝑥𝑋
Assertion
Ref Expression
nfpred 𝑥Pred(𝑅, 𝐴, 𝑋)

Proof of Theorem nfpred
StepHypRef Expression
1 df-pred 6295 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 nfpred.2 . . 3 𝑥𝐴
3 nfpred.1 . . . . 5 𝑥𝑅
43nfcnv 5863 . . . 4 𝑥𝑅
5 nfpred.3 . . . . 5 𝑥𝑋
65nfsn 4688 . . . 4 𝑥{𝑋}
74, 6nfima 6060 . . 3 𝑥(𝑅 “ {𝑋})
82, 7nfin 4204 . 2 𝑥(𝐴 ∩ (𝑅 “ {𝑋}))
91, 8nfcxfr 2897 1 𝑥Pred(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884  cin 3930  {csn 4606  ccnv 5658  cima 5662  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295
This theorem is referenced by:  nffrecs  8287  nfwrecsOLD  8321  nfwsuc  35841  nfwlim  35845
  Copyright terms: Public domain W3C validator