MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpred Structured version   Visualization version   GIF version

Theorem nfpred 6293
Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfpred.1 𝑥𝑅
nfpred.2 𝑥𝐴
nfpred.3 𝑥𝑋
Assertion
Ref Expression
nfpred 𝑥Pred(𝑅, 𝐴, 𝑋)

Proof of Theorem nfpred
StepHypRef Expression
1 df-pred 6288 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 nfpred.2 . . 3 𝑥𝐴
3 nfpred.1 . . . . 5 𝑥𝑅
43nfcnv 5856 . . . 4 𝑥𝑅
5 nfpred.3 . . . . 5 𝑥𝑋
65nfsn 4681 . . . 4 𝑥{𝑋}
74, 6nfima 6053 . . 3 𝑥(𝑅 “ {𝑋})
82, 7nfin 4197 . 2 𝑥(𝐴 ∩ (𝑅 “ {𝑋}))
91, 8nfcxfr 2895 1 𝑥Pred(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2882  cin 3923  {csn 4599  ccnv 5651  cima 5655  Predcpred 6287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-cnv 5660  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288
This theorem is referenced by:  nffrecs  8277  nfwrecsOLD  8311  nfwsuc  35765  nfwlim  35769
  Copyright terms: Public domain W3C validator