![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpred | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
Ref | Expression |
---|---|
nfpred.1 | ⊢ Ⅎ𝑥𝑅 |
nfpred.2 | ⊢ Ⅎ𝑥𝐴 |
nfpred.3 | ⊢ Ⅎ𝑥𝑋 |
Ref | Expression |
---|---|
nfpred | ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6323 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | nfpred.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfpred.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5892 | . . . 4 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfpred.3 | . . . . 5 ⊢ Ⅎ𝑥𝑋 | |
6 | 5 | nfsn 4712 | . . . 4 ⊢ Ⅎ𝑥{𝑋} |
7 | 4, 6 | nfima 6088 | . . 3 ⊢ Ⅎ𝑥(◡𝑅 “ {𝑋}) |
8 | 2, 7 | nfin 4232 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 1, 8 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ∩ cin 3962 {csn 4631 ◡ccnv 5688 “ cima 5692 Predcpred 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 |
This theorem is referenced by: nffrecs 8307 nfwrecsOLD 8341 nfwsuc 35800 nfwlim 35804 |
Copyright terms: Public domain | W3C validator |