HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjval Structured version   Visualization version   GIF version

Theorem adjval 31648
Description: Value of the adjoint function for ๐‘‡ in the domain of adjโ„Ž. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjval (๐‘‡ โˆˆ dom adjโ„Ž โ†’ (adjโ„Žโ€˜๐‘‡) = (โ„ฉ๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹)โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
Distinct variable group:   ๐‘ฅ,๐‘ข,๐‘ฆ,๐‘‡

Proof of Theorem adjval
Dummy variable ๐‘ก is distinct from all other variables.
StepHypRef Expression
1 dmadjop 31646 . . . . 5 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ ๐‘‡: โ„‹โŸถ โ„‹)
21biantrurd 532 . . . 4 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ ((๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))))
3 ax-hilex 30757 . . . . . 6 โ„‹ โˆˆ V
43, 3elmap 8864 . . . . 5 (๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โ†” ๐‘ข: โ„‹โŸถ โ„‹)
54anbi1i 623 . . . 4 ((๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) โ†” (๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
6 3anass 1092 . . . 4 ((๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง (๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
72, 5, 63bitr4g 314 . . 3 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ ((๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
87iotabidv 6520 . 2 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ (โ„ฉ๐‘ข(๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))) = (โ„ฉ๐‘ข(๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
9 df-riota 7360 . . 3 (โ„ฉ๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹)โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) = (โ„ฉ๐‘ข(๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
109a1i 11 . 2 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ (โ„ฉ๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹)โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) = (โ„ฉ๐‘ข(๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹) โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
11 dfadj2 31643 . . 3 adjโ„Ž = {โŸจ๐‘ก, ๐‘ขโŸฉ โˆฃ (๐‘ก: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘กโ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))}
12 feq1 6691 . . . 4 (๐‘ก = ๐‘‡ โ†’ (๐‘ก: โ„‹โŸถ โ„‹ โ†” ๐‘‡: โ„‹โŸถ โ„‹))
13 fveq1 6883 . . . . . . 7 (๐‘ก = ๐‘‡ โ†’ (๐‘กโ€˜๐‘ฆ) = (๐‘‡โ€˜๐‘ฆ))
1413oveq2d 7420 . . . . . 6 (๐‘ก = ๐‘‡ โ†’ (๐‘ฅ ยทih (๐‘กโ€˜๐‘ฆ)) = (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)))
1514eqeq1d 2728 . . . . 5 (๐‘ก = ๐‘‡ โ†’ ((๐‘ฅ ยทih (๐‘กโ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
16152ralbidv 3212 . . . 4 (๐‘ก = ๐‘‡ โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘กโ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
1712, 163anbi13d 1434 . . 3 (๐‘ก = ๐‘‡ โ†’ ((๐‘ก: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘กโ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)) โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
1811, 17fvopab5 7023 . 2 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ (adjโ„Žโ€˜๐‘‡) = (โ„ฉ๐‘ข(๐‘‡: โ„‹โŸถ โ„‹ โˆง ๐‘ข: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ))))
198, 10, 183eqtr4rd 2777 1 (๐‘‡ โˆˆ dom adjโ„Ž โ†’ (adjโ„Žโ€˜๐‘‡) = (โ„ฉ๐‘ข โˆˆ ( โ„‹ โ†‘m โ„‹)โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘ขโ€˜๐‘ฅ) ยทih ๐‘ฆ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3055  dom cdm 5669  โ„ฉcio 6486  โŸถwf 6532  โ€˜cfv 6536  โ„ฉcrio 7359  (class class class)co 7404   โ†‘m cmap 8819   โ„‹chba 30677   ยทih csp 30680  adjโ„Žcado 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-hilex 30757  ax-hfi 30837  ax-his1 30840
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-2 12276  df-cj 15050  df-re 15051  df-im 15052  df-adjh 31607
This theorem is referenced by:  adjval2  31649  adjbdln  31841
  Copyright terms: Public domain W3C validator