MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaund Structured version   Visualization version   GIF version

Theorem riotaund 7337
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 7298 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 df-reu 3347 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iotanul 6456 . . 3 (¬ ∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = ∅)
42, 3sylnbi 330 . 2 (¬ ∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = ∅)
51, 4eqtrid 2778 1 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  ∃!weu 2563  ∃!wreu 3344  c0 4278  cio 6430  crio 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-reu 3347  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4279  df-sn 4572  df-uni 4855  df-iota 6432  df-riota 7298
This theorem is referenced by:  riotassuni  7338  riotaclb  7339  supval2  9334  lubval  18255  glbval  18268  grpinvfval  18886  finxpreclem4  37428
  Copyright terms: Public domain W3C validator