MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaund Structured version   Visualization version   GIF version

Theorem riotaund 7444
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 7404 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 df-reu 3389 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iotanul 6551 . . 3 (¬ ∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = ∅)
42, 3sylnbi 330 . 2 (¬ ∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = ∅)
51, 4eqtrid 2792 1 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  ∃!wreu 3386  c0 4352  cio 6523  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-reu 3389  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  riotassuni  7445  riotaclb  7446  supval2  9524  lubval  18426  glbval  18439  grpinvfval  19018  finxpreclem4  37360
  Copyright terms: Public domain W3C validator