MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaund Structured version   Visualization version   GIF version

Theorem riotaund 7272
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaund (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaund
StepHypRef Expression
1 df-riota 7232 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 df-reu 3072 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iotanul 6411 . . 3 (¬ ∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = ∅)
42, 3sylnbi 330 . 2 (¬ ∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = ∅)
51, 4eqtrid 2790 1 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  ∃!weu 2568  ∃!wreu 3066  c0 4256  cio 6389  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-uni 4840  df-iota 6391  df-riota 7232
This theorem is referenced by:  riotassuni  7273  riotaclb  7274  supval2  9214  lubval  18074  glbval  18087  grpinvfval  18618  finxpreclem4  35565
  Copyright terms: Public domain W3C validator