MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snriota Structured version   Visualization version   GIF version

Theorem snriota 7204
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 3068 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 sniota 6371 . . 3 (∃!𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
31, 2sylbi 220 . 2 (∃!𝑥𝐴 𝜑 → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
4 df-rab 3070 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-riota 7170 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
65sneqi 4552 . 2 {(𝑥𝐴 𝜑)} = {(℩𝑥(𝑥𝐴𝜑))}
73, 4, 63eqtr4g 2803 1 (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  ∃!weu 2567  {cab 2714  ∃!wreu 3063  {crab 3065  {csn 4541  cio 6336  crio 7169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-un 3871  df-in 3873  df-ss 3883  df-sn 4542  df-pr 4544  df-uni 4820  df-iota 6338  df-riota 7170
This theorem is referenced by:  divalgmod  15967
  Copyright terms: Public domain W3C validator