![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snriota | Structured version Visualization version GIF version |
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
snriota | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3355 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | sniota 6488 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) |
4 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-riota 7314 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | sneqi 4598 | . 2 ⊢ {(℩𝑥 ∈ 𝐴 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))} |
7 | 3, 4, 6 | 3eqtr4g 2802 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2567 {cab 2714 ∃!wreu 3352 {crab 3408 {csn 4587 ℩cio 6447 ℩crio 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-un 3916 df-in 3918 df-ss 3928 df-sn 4588 df-pr 4590 df-uni 4867 df-iota 6449 df-riota 7314 |
This theorem is referenced by: divalgmod 16289 |
Copyright terms: Public domain | W3C validator |