![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snriota | Structured version Visualization version GIF version |
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
snriota | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3112 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | sniota 6216 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) | |
3 | 1, 2 | sylbi 218 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) |
4 | df-rab 3114 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-riota 6977 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | sneqi 4483 | . 2 ⊢ {(℩𝑥 ∈ 𝐴 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))} |
7 | 3, 4, 6 | 3eqtr4g 2856 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∃!weu 2611 {cab 2775 ∃!wreu 3107 {crab 3109 {csn 4472 ℩cio 6187 ℩crio 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-un 3864 df-sn 4473 df-pr 4475 df-uni 4746 df-iota 6189 df-riota 6977 |
This theorem is referenced by: divalgmod 15590 |
Copyright terms: Public domain | W3C validator |