MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snriota Structured version   Visualization version   GIF version

Theorem snriota 7438
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 3389 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 sniota 6564 . . 3 (∃!𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
31, 2sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → {𝑥 ∣ (𝑥𝐴𝜑)} = {(℩𝑥(𝑥𝐴𝜑))})
4 df-rab 3444 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-riota 7404 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
65sneqi 4659 . 2 {(𝑥𝐴 𝜑)} = {(℩𝑥(𝑥𝐴𝜑))}
73, 4, 63eqtr4g 2805 1 (∃!𝑥𝐴 𝜑 → {𝑥𝐴𝜑} = {(𝑥𝐴 𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  {cab 2717  ∃!wreu 3386  {crab 3443  {csn 4648  cio 6523  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  divalgmod  16454
  Copyright terms: Public domain W3C validator