Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snriota | Structured version Visualization version GIF version |
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
snriota | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3070 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | sniota 6409 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))}) |
4 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-riota 7212 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | sneqi 4569 | . 2 ⊢ {(℩𝑥 ∈ 𝐴 𝜑)} = {(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))} |
7 | 3, 4, 6 | 3eqtr4g 2804 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 {cab 2715 ∃!wreu 3065 {crab 3067 {csn 4558 ℩cio 6374 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: divalgmod 16043 |
Copyright terms: Public domain | W3C validator |