MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1peqb Structured version   Visualization version   GIF version

Theorem q1peqb 26077
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = (deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
q1peqb.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
q1peqb ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))

Proof of Theorem q1peqb
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . 4 (𝑋𝐵𝑋 ∈ V)
21adantr 480 . . 3 ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V)
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V))
4 ovex 7386 . . . 4 (𝐹𝑄𝐺) ∈ V
5 eleq1 2816 . . . 4 ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V))
64, 5mpbii 233 . . 3 ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V))
8 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
9 q1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 q1pval.d . . . . . . . 8 𝐷 = (deg1𝑅)
11 q1pval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 q1pval.m . . . . . . . 8 = (-g𝑃)
13 eqid 2729 . . . . . . . 8 (0g𝑃) = (0g𝑃)
14 q1pval.t . . . . . . . 8 · = (.r𝑃)
15 simp1 1136 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
17 q1peqb.c . . . . . . . . . 10 𝐶 = (Unic1p𝑅)
189, 11, 17uc1pcl 26065 . . . . . . . . 9 (𝐺𝐶𝐺𝐵)
19183ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
209, 13, 17uc1pn0 26067 . . . . . . . . 9 (𝐺𝐶𝐺 ≠ (0g𝑃))
21203ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ≠ (0g𝑃))
22 eqid 2729 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
2310, 22, 17uc1pldg 26070 . . . . . . . . 9 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
24233ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
259, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22ply1divalg2 26060 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))
26 df-reu 3346 . . . . . . 7 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2725, 26sylib 218 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2827adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
29 eleq1 2816 . . . . . . 7 (𝑞 = 𝑋 → (𝑞𝐵𝑋𝐵))
30 oveq1 7360 . . . . . . . . . 10 (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺))
3130oveq2d 7369 . . . . . . . . 9 (𝑞 = 𝑋 → (𝐹 (𝑞 · 𝐺)) = (𝐹 (𝑋 · 𝐺)))
3231fveq2d 6830 . . . . . . . 8 (𝑞 = 𝑋 → (𝐷‘(𝐹 (𝑞 · 𝐺))) = (𝐷‘(𝐹 (𝑋 · 𝐺))))
3332breq1d 5105 . . . . . . 7 (𝑞 = 𝑋 → ((𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)))
3429, 33anbi12d 632 . . . . . 6 (𝑞 = 𝑋 → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
3534adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
368, 28, 35iota2d 6474 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
37 q1pval.q . . . . . . . . 9 𝑄 = (quot1p𝑅)
3837, 9, 11, 10, 12, 14q1pval 26076 . . . . . . . 8 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
3916, 19, 38syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
40 df-riota 7310 . . . . . . 7 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
4139, 40eqtrdi 2780 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4241adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4342eqeq1d 2731 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
4436, 43bitr4d 282 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
4544ex 412 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝑋 ∈ V → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)))
463, 7, 45pm5.21ndd 379 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!weu 2561  wne 2925  ∃!wreu 3343  Vcvv 3438   class class class wbr 5095  cio 6440  cfv 6486  crio 7309  (class class class)co 7353   < clt 11168  Basecbs 17138  .rcmulr 17180  0gc0g 17361  -gcsg 18832  Ringcrg 20136  Unitcui 20258  Poly1cpl1 22077  coe1cco1 22078  deg1cdg1 25975  Unic1pcuc1p 26048  quot1pcq1p 26049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-lmod 20783  df-lss 20853  df-cnfld 21280  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mdeg 25976  df-deg1 25977  df-uc1p 26053  df-q1p 26054
This theorem is referenced by:  q1pcl  26078  r1pdeglt  26081  r1pid2  26083  dvdsq1p  26084  q1pdir  33544  q1pvsca  33545  r1pid2OLD  33550  irredminply  33682  aks6d1c5lem3  42110
  Copyright terms: Public domain W3C validator