![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > q1peqb | Structured version Visualization version GIF version |
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
q1pval.q | ⊢ 𝑄 = (quot1p‘𝑅) |
q1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
q1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
q1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
q1pval.m | ⊢ − = (-g‘𝑃) |
q1pval.t | ⊢ · = (.r‘𝑃) |
q1peqb.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
q1peqb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3455 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V)) |
4 | ovex 7048 | . . . 4 ⊢ (𝐹𝑄𝐺) ∈ V | |
5 | eleq1 2870 | . . . 4 ⊢ ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V)) | |
6 | 4, 5 | mpbii 234 | . . 3 ⊢ ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V) |
7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V)) |
8 | simpr 485 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
9 | q1pval.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | q1pval.d | . . . . . . . 8 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | q1pval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
12 | q1pval.m | . . . . . . . 8 ⊢ − = (-g‘𝑃) | |
13 | eqid 2795 | . . . . . . . 8 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
14 | q1pval.t | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
15 | simp1 1129 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑅 ∈ Ring) | |
16 | simp2 1130 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
17 | q1peqb.c | . . . . . . . . . 10 ⊢ 𝐶 = (Unic1p‘𝑅) | |
18 | 9, 11, 17 | uc1pcl 24420 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
19 | 18 | 3ad2ant3 1128 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
20 | 9, 13, 17 | uc1pn0 24422 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
21 | 20 | 3ad2ant3 1128 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ≠ (0g‘𝑃)) |
22 | eqid 2795 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
23 | 10, 22, 17 | uc1pldg 24425 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
24 | 23 | 3ad2ant3 1128 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
25 | 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22 | ply1divalg2 24415 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) |
26 | df-reu 3112 | . . . . . . 7 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
27 | 25, 26 | sylib 219 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
28 | 27 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
29 | eleq1 2870 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → (𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
30 | oveq1 7023 | . . . . . . . . . 10 ⊢ (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺)) | |
31 | 30 | oveq2d 7032 | . . . . . . . . 9 ⊢ (𝑞 = 𝑋 → (𝐹 − (𝑞 · 𝐺)) = (𝐹 − (𝑋 · 𝐺))) |
32 | 31 | fveq2d 6542 | . . . . . . . 8 ⊢ (𝑞 = 𝑋 → (𝐷‘(𝐹 − (𝑞 · 𝐺))) = (𝐷‘(𝐹 − (𝑋 · 𝐺)))) |
33 | 32 | breq1d 4972 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → ((𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺))) |
34 | 29, 33 | anbi12d 630 | . . . . . 6 ⊢ (𝑞 = 𝑋 → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
35 | 34 | adantl 482 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
36 | 8, 28, 35 | iota2d 6214 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
37 | q1pval.q | . . . . . . . . 9 ⊢ 𝑄 = (quot1p‘𝑅) | |
38 | 37, 9, 11, 10, 12, 14 | q1pval 24430 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
39 | 16, 19, 38 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
40 | df-riota 6977 | . . . . . . 7 ⊢ (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
41 | 39, 40 | syl6eq 2847 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
42 | 41 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
43 | 42 | eqeq1d 2797 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
44 | 36, 43 | bitr4d 283 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
45 | 44 | ex 413 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝑋 ∈ V → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))) |
46 | 3, 7, 45 | pm5.21ndd 381 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∃!weu 2611 ≠ wne 2984 ∃!wreu 3107 Vcvv 3437 class class class wbr 4962 ℩cio 6187 ‘cfv 6225 ℩crio 6976 (class class class)co 7016 < clt 10521 Basecbs 16312 .rcmulr 16395 0gc0g 16542 -gcsg 17863 Ringcrg 18987 Unitcui 19079 Poly1cpl1 20028 coe1cco1 20029 deg1 cdg1 24331 Unic1pcuc1p 24403 quot1pcq1p 24404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 ax-addf 10462 ax-mulf 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-ofr 7268 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-pm 8259 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-fzo 12884 df-seq 13220 df-hash 13541 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-sca 16410 df-vsca 16411 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-0g 16544 df-gsum 16545 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-mhm 17774 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-mulg 17982 df-subg 18030 df-ghm 18097 df-cntz 18188 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-cring 18990 df-oppr 19063 df-dvdsr 19081 df-unit 19082 df-invr 19112 df-subrg 19223 df-lmod 19326 df-lss 19394 df-rlreg 19745 df-psr 19824 df-mvr 19825 df-mpl 19826 df-opsr 19828 df-psr1 20031 df-vr1 20032 df-ply1 20033 df-coe1 20034 df-cnfld 20228 df-mdeg 24332 df-deg1 24333 df-uc1p 24408 df-q1p 24409 |
This theorem is referenced by: q1pcl 24432 r1pdeglt 24435 dvdsq1p 24437 |
Copyright terms: Public domain | W3C validator |