MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1peqb Structured version   Visualization version   GIF version

Theorem q1peqb 26098
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = (deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
q1peqb.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
q1peqb ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))

Proof of Theorem q1peqb
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . 4 (𝑋𝐵𝑋 ∈ V)
21adantr 480 . . 3 ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V)
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V))
4 ovex 7388 . . . 4 (𝐹𝑄𝐺) ∈ V
5 eleq1 2821 . . . 4 ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V))
64, 5mpbii 233 . . 3 ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V))
8 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
9 q1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 q1pval.d . . . . . . . 8 𝐷 = (deg1𝑅)
11 q1pval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 q1pval.m . . . . . . . 8 = (-g𝑃)
13 eqid 2733 . . . . . . . 8 (0g𝑃) = (0g𝑃)
14 q1pval.t . . . . . . . 8 · = (.r𝑃)
15 simp1 1136 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
17 q1peqb.c . . . . . . . . . 10 𝐶 = (Unic1p𝑅)
189, 11, 17uc1pcl 26086 . . . . . . . . 9 (𝐺𝐶𝐺𝐵)
19183ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
209, 13, 17uc1pn0 26088 . . . . . . . . 9 (𝐺𝐶𝐺 ≠ (0g𝑃))
21203ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ≠ (0g𝑃))
22 eqid 2733 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
2310, 22, 17uc1pldg 26091 . . . . . . . . 9 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
24233ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
259, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22ply1divalg2 26081 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))
26 df-reu 3349 . . . . . . 7 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2725, 26sylib 218 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2827adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
29 eleq1 2821 . . . . . . 7 (𝑞 = 𝑋 → (𝑞𝐵𝑋𝐵))
30 oveq1 7362 . . . . . . . . . 10 (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺))
3130oveq2d 7371 . . . . . . . . 9 (𝑞 = 𝑋 → (𝐹 (𝑞 · 𝐺)) = (𝐹 (𝑋 · 𝐺)))
3231fveq2d 6835 . . . . . . . 8 (𝑞 = 𝑋 → (𝐷‘(𝐹 (𝑞 · 𝐺))) = (𝐷‘(𝐹 (𝑋 · 𝐺))))
3332breq1d 5105 . . . . . . 7 (𝑞 = 𝑋 → ((𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)))
3429, 33anbi12d 632 . . . . . 6 (𝑞 = 𝑋 → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
3534adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
368, 28, 35iota2d 6477 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
37 q1pval.q . . . . . . . . 9 𝑄 = (quot1p𝑅)
3837, 9, 11, 10, 12, 14q1pval 26097 . . . . . . . 8 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
3916, 19, 38syl2anc 584 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
40 df-riota 7312 . . . . . . 7 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
4139, 40eqtrdi 2784 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4241adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4342eqeq1d 2735 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
4436, 43bitr4d 282 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
4544ex 412 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝑋 ∈ V → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)))
463, 7, 45pm5.21ndd 379 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ∃!weu 2565  wne 2930  ∃!wreu 3346  Vcvv 3438   class class class wbr 5095  cio 6443  cfv 6489  crio 7311  (class class class)co 7355   < clt 11156  Basecbs 17130  .rcmulr 17172  0gc0g 17353  -gcsg 18858  Ringcrg 20161  Unitcui 20283  Poly1cpl1 22099  coe1cco1 22100  deg1cdg1 25996  Unic1pcuc1p 26069  quot1pcq1p 26070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-0g 17355  df-gsum 17356  df-prds 17361  df-pws 17363  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-subrng 20471  df-subrg 20495  df-rlreg 20619  df-lmod 20805  df-lss 20875  df-cnfld 21302  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mdeg 25997  df-deg1 25998  df-uc1p 26074  df-q1p 26075
This theorem is referenced by:  q1pcl  26099  r1pdeglt  26102  r1pid2  26104  dvdsq1p  26105  q1pdir  33574  q1pvsca  33575  r1pid2OLD  33580  irredminply  33740  aks6d1c5lem3  42240
  Copyright terms: Public domain W3C validator