MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1peqb Structured version   Visualization version   GIF version

Theorem q1peqb 26215
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = (deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
q1peqb.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
q1peqb ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))

Proof of Theorem q1peqb
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . . 4 (𝑋𝐵𝑋 ∈ V)
21adantr 480 . . 3 ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V)
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V))
4 ovex 7481 . . . 4 (𝐹𝑄𝐺) ∈ V
5 eleq1 2832 . . . 4 ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V))
64, 5mpbii 233 . . 3 ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V))
8 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
9 q1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 q1pval.d . . . . . . . 8 𝐷 = (deg1𝑅)
11 q1pval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 q1pval.m . . . . . . . 8 = (-g𝑃)
13 eqid 2740 . . . . . . . 8 (0g𝑃) = (0g𝑃)
14 q1pval.t . . . . . . . 8 · = (.r𝑃)
15 simp1 1136 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑅 ∈ Ring)
16 simp2 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
17 q1peqb.c . . . . . . . . . 10 𝐶 = (Unic1p𝑅)
189, 11, 17uc1pcl 26203 . . . . . . . . 9 (𝐺𝐶𝐺𝐵)
19183ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
209, 13, 17uc1pn0 26205 . . . . . . . . 9 (𝐺𝐶𝐺 ≠ (0g𝑃))
21203ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ≠ (0g𝑃))
22 eqid 2740 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
2310, 22, 17uc1pldg 26208 . . . . . . . . 9 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
24233ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
259, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22ply1divalg2 26198 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))
26 df-reu 3389 . . . . . . 7 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2725, 26sylib 218 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2827adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
29 eleq1 2832 . . . . . . 7 (𝑞 = 𝑋 → (𝑞𝐵𝑋𝐵))
30 oveq1 7455 . . . . . . . . . 10 (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺))
3130oveq2d 7464 . . . . . . . . 9 (𝑞 = 𝑋 → (𝐹 (𝑞 · 𝐺)) = (𝐹 (𝑋 · 𝐺)))
3231fveq2d 6924 . . . . . . . 8 (𝑞 = 𝑋 → (𝐷‘(𝐹 (𝑞 · 𝐺))) = (𝐷‘(𝐹 (𝑋 · 𝐺))))
3332breq1d 5176 . . . . . . 7 (𝑞 = 𝑋 → ((𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)))
3429, 33anbi12d 631 . . . . . 6 (𝑞 = 𝑋 → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
3534adantl 481 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
368, 28, 35iota2d 6561 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
37 q1pval.q . . . . . . . . 9 𝑄 = (quot1p𝑅)
3837, 9, 11, 10, 12, 14q1pval 26214 . . . . . . . 8 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
3916, 19, 38syl2anc 583 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
40 df-riota 7404 . . . . . . 7 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
4139, 40eqtrdi 2796 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4241adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4342eqeq1d 2742 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
4436, 43bitr4d 282 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
4544ex 412 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝑋 ∈ V → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)))
463, 7, 45pm5.21ndd 379 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ∃!weu 2571  wne 2946  ∃!wreu 3386  Vcvv 3488   class class class wbr 5166  cio 6523  cfv 6573  crio 7403  (class class class)co 7448   < clt 11324  Basecbs 17258  .rcmulr 17312  0gc0g 17499  -gcsg 18975  Ringcrg 20260  Unitcui 20381  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113  Unic1pcuc1p 26186  quot1pcq1p 26187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-lmod 20882  df-lss 20953  df-cnfld 21388  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192
This theorem is referenced by:  q1pcl  26216  r1pdeglt  26219  r1pid2  26221  dvdsq1p  26222  q1pdir  33588  q1pvsca  33589  r1pid2OLD  33594  irredminply  33707  aks6d1c5lem3  42094
  Copyright terms: Public domain W3C validator