| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > q1peqb | Structured version Visualization version GIF version | ||
| Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| q1pval.q | ⊢ 𝑄 = (quot1p‘𝑅) |
| q1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| q1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| q1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| q1pval.m | ⊢ − = (-g‘𝑃) |
| q1pval.t | ⊢ · = (.r‘𝑃) |
| q1peqb.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| q1peqb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3455 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V)) |
| 4 | ovex 7374 | . . . 4 ⊢ (𝐹𝑄𝐺) ∈ V | |
| 5 | eleq1 2817 | . . . 4 ⊢ ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V)) | |
| 6 | 4, 5 | mpbii 233 | . . 3 ⊢ ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V) |
| 7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V)) |
| 8 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 9 | q1pval.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | q1pval.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | q1pval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | q1pval.m | . . . . . . . 8 ⊢ − = (-g‘𝑃) | |
| 13 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 14 | q1pval.t | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
| 15 | simp1 1136 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑅 ∈ Ring) | |
| 16 | simp2 1137 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
| 17 | q1peqb.c | . . . . . . . . . 10 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 18 | 9, 11, 17 | uc1pcl 26069 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 19 | 18 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
| 20 | 9, 13, 17 | uc1pn0 26071 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
| 21 | 20 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ≠ (0g‘𝑃)) |
| 22 | eqid 2730 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 23 | 10, 22, 17 | uc1pldg 26074 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 24 | 23 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 25 | 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22 | ply1divalg2 26064 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) |
| 26 | df-reu 3345 | . . . . . . 7 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
| 27 | 25, 26 | sylib 218 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 29 | eleq1 2817 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → (𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 30 | oveq1 7348 | . . . . . . . . . 10 ⊢ (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺)) | |
| 31 | 30 | oveq2d 7357 | . . . . . . . . 9 ⊢ (𝑞 = 𝑋 → (𝐹 − (𝑞 · 𝐺)) = (𝐹 − (𝑋 · 𝐺))) |
| 32 | 31 | fveq2d 6821 | . . . . . . . 8 ⊢ (𝑞 = 𝑋 → (𝐷‘(𝐹 − (𝑞 · 𝐺))) = (𝐷‘(𝐹 − (𝑋 · 𝐺)))) |
| 33 | 32 | breq1d 5099 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → ((𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺))) |
| 34 | 29, 33 | anbi12d 632 | . . . . . 6 ⊢ (𝑞 = 𝑋 → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
| 35 | 34 | adantl 481 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
| 36 | 8, 28, 35 | iota2d 6465 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
| 37 | q1pval.q | . . . . . . . . 9 ⊢ 𝑄 = (quot1p‘𝑅) | |
| 38 | 37, 9, 11, 10, 12, 14 | q1pval 26080 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 39 | 16, 19, 38 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 40 | df-riota 7298 | . . . . . . 7 ⊢ (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
| 41 | 39, 40 | eqtrdi 2781 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
| 42 | 41 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
| 43 | 42 | eqeq1d 2732 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
| 44 | 36, 43 | bitr4d 282 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| 45 | 44 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝑋 ∈ V → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))) |
| 46 | 3, 7, 45 | pm5.21ndd 379 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃!weu 2562 ≠ wne 2926 ∃!wreu 3342 Vcvv 3434 class class class wbr 5089 ℩cio 6431 ‘cfv 6477 ℩crio 7297 (class class class)co 7341 < clt 11138 Basecbs 17112 .rcmulr 17154 0gc0g 17335 -gcsg 18840 Ringcrg 20144 Unitcui 20266 Poly1cpl1 22082 coe1cco1 22083 deg1cdg1 25979 Unic1pcuc1p 26052 quot1pcq1p 26053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-subrng 20454 df-subrg 20478 df-rlreg 20602 df-lmod 20788 df-lss 20858 df-cnfld 21285 df-psr 21839 df-mvr 21840 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-vr1 22086 df-ply1 22087 df-coe1 22088 df-mdeg 25980 df-deg1 25981 df-uc1p 26057 df-q1p 26058 |
| This theorem is referenced by: q1pcl 26082 r1pdeglt 26085 r1pid2 26087 dvdsq1p 26088 q1pdir 33553 q1pvsca 33554 r1pid2OLD 33559 irredminply 33719 aks6d1c5lem3 42149 |
| Copyright terms: Public domain | W3C validator |