MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  q1peqb Structured version   Visualization version   GIF version

Theorem q1peqb 25052
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
q1pval.q 𝑄 = (quot1p𝑅)
q1pval.p 𝑃 = (Poly1𝑅)
q1pval.b 𝐵 = (Base‘𝑃)
q1pval.d 𝐷 = ( deg1𝑅)
q1pval.m = (-g𝑃)
q1pval.t · = (.r𝑃)
q1peqb.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
q1peqb ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))

Proof of Theorem q1peqb
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 elex 3426 . . . 4 (𝑋𝐵𝑋 ∈ V)
21adantr 484 . . 3 ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V)
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) → 𝑋 ∈ V))
4 ovex 7246 . . . 4 (𝐹𝑄𝐺) ∈ V
5 eleq1 2825 . . . 4 ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V))
64, 5mpbii 236 . . 3 ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) = 𝑋𝑋 ∈ V))
8 simpr 488 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V)
9 q1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
10 q1pval.d . . . . . . . 8 𝐷 = ( deg1𝑅)
11 q1pval.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 q1pval.m . . . . . . . 8 = (-g𝑃)
13 eqid 2737 . . . . . . . 8 (0g𝑃) = (0g𝑃)
14 q1pval.t . . . . . . . 8 · = (.r𝑃)
15 simp1 1138 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑅 ∈ Ring)
16 simp2 1139 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
17 q1peqb.c . . . . . . . . . 10 𝐶 = (Unic1p𝑅)
189, 11, 17uc1pcl 25041 . . . . . . . . 9 (𝐺𝐶𝐺𝐵)
19183ad2ant3 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
209, 13, 17uc1pn0 25043 . . . . . . . . 9 (𝐺𝐶𝐺 ≠ (0g𝑃))
21203ad2ant3 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ≠ (0g𝑃))
22 eqid 2737 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
2310, 22, 17uc1pldg 25046 . . . . . . . . 9 (𝐺𝐶 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
24233ad2ant3 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
259, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22ply1divalg2 25036 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))
26 df-reu 3068 . . . . . . 7 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2725, 26sylib 221 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
2827adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
29 eleq1 2825 . . . . . . 7 (𝑞 = 𝑋 → (𝑞𝐵𝑋𝐵))
30 oveq1 7220 . . . . . . . . . 10 (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺))
3130oveq2d 7229 . . . . . . . . 9 (𝑞 = 𝑋 → (𝐹 (𝑞 · 𝐺)) = (𝐹 (𝑋 · 𝐺)))
3231fveq2d 6721 . . . . . . . 8 (𝑞 = 𝑋 → (𝐷‘(𝐹 (𝑞 · 𝐺))) = (𝐷‘(𝐹 (𝑋 · 𝐺))))
3332breq1d 5063 . . . . . . 7 (𝑞 = 𝑋 → ((𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺) ↔ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)))
3429, 33anbi12d 634 . . . . . 6 (𝑞 = 𝑋 → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
3534adantl 485 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) ↔ (𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺))))
368, 28, 35iota2d 6368 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
37 q1pval.q . . . . . . . . 9 𝑄 = (quot1p𝑅)
3837, 9, 11, 10, 12, 14q1pval 25051 . . . . . . . 8 ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
3916, 19, 38syl2anc 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
40 df-riota 7170 . . . . . . 7 (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
4139, 40eqtrdi 2794 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4241adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))))
4342eqeq1d 2739 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞𝐵 ∧ (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺))) = 𝑋))
4436, 43bitr4d 285 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑋 ∈ V) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
4544ex 416 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝑋 ∈ V → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)))
463, 7, 45pm5.21ndd 384 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  ∃!weu 2567  wne 2940  ∃!wreu 3063  Vcvv 3408   class class class wbr 5053  cio 6336  cfv 6380  crio 7169  (class class class)co 7213   < clt 10867  Basecbs 16760  .rcmulr 16803  0gc0g 16944  -gcsg 18367  Ringcrg 19562  Unitcui 19657  Poly1cpl1 21098  coe1cco1 21099   deg1 cdg1 24949  Unic1pcuc1p 25024  quot1pcq1p 25025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-subrg 19798  df-lmod 19901  df-lss 19969  df-rlreg 20321  df-cnfld 20364  df-psr 20868  df-mvr 20869  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-vr1 21102  df-ply1 21103  df-coe1 21104  df-mdeg 24950  df-deg1 24951  df-uc1p 25029  df-q1p 25030
This theorem is referenced by:  q1pcl  25053  r1pdeglt  25056  dvdsq1p  25058
  Copyright terms: Public domain W3C validator