| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > q1peqb | Structured version Visualization version GIF version | ||
| Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| q1pval.q | ⊢ 𝑄 = (quot1p‘𝑅) |
| q1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| q1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| q1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| q1pval.m | ⊢ − = (-g‘𝑃) |
| q1pval.t | ⊢ · = (.r‘𝑃) |
| q1peqb.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| q1peqb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V)) |
| 4 | ovex 7386 | . . . 4 ⊢ (𝐹𝑄𝐺) ∈ V | |
| 5 | eleq1 2816 | . . . 4 ⊢ ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V)) | |
| 6 | 4, 5 | mpbii 233 | . . 3 ⊢ ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V) |
| 7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V)) |
| 8 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
| 9 | q1pval.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 10 | q1pval.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘𝑅) | |
| 11 | q1pval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
| 12 | q1pval.m | . . . . . . . 8 ⊢ − = (-g‘𝑃) | |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 14 | q1pval.t | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
| 15 | simp1 1136 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑅 ∈ Ring) | |
| 16 | simp2 1137 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
| 17 | q1peqb.c | . . . . . . . . . 10 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 18 | 9, 11, 17 | uc1pcl 26065 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 19 | 18 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
| 20 | 9, 13, 17 | uc1pn0 26067 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
| 21 | 20 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ≠ (0g‘𝑃)) |
| 22 | eqid 2729 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 23 | 10, 22, 17 | uc1pldg 26070 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 24 | 23 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 25 | 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22 | ply1divalg2 26060 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) |
| 26 | df-reu 3346 | . . . . . . 7 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
| 27 | 25, 26 | sylib 218 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 29 | eleq1 2816 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → (𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 30 | oveq1 7360 | . . . . . . . . . 10 ⊢ (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺)) | |
| 31 | 30 | oveq2d 7369 | . . . . . . . . 9 ⊢ (𝑞 = 𝑋 → (𝐹 − (𝑞 · 𝐺)) = (𝐹 − (𝑋 · 𝐺))) |
| 32 | 31 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝑞 = 𝑋 → (𝐷‘(𝐹 − (𝑞 · 𝐺))) = (𝐷‘(𝐹 − (𝑋 · 𝐺)))) |
| 33 | 32 | breq1d 5105 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → ((𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺))) |
| 34 | 29, 33 | anbi12d 632 | . . . . . 6 ⊢ (𝑞 = 𝑋 → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
| 35 | 34 | adantl 481 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
| 36 | 8, 28, 35 | iota2d 6474 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
| 37 | q1pval.q | . . . . . . . . 9 ⊢ 𝑄 = (quot1p‘𝑅) | |
| 38 | 37, 9, 11, 10, 12, 14 | q1pval 26076 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 39 | 16, 19, 38 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
| 40 | df-riota 7310 | . . . . . . 7 ⊢ (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
| 41 | 39, 40 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
| 42 | 41 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
| 43 | 42 | eqeq1d 2731 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
| 44 | 36, 43 | bitr4d 282 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| 45 | 44 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝑋 ∈ V → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))) |
| 46 | 3, 7, 45 | pm5.21ndd 379 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 ∃!wreu 3343 Vcvv 3438 class class class wbr 5095 ℩cio 6440 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 < clt 11168 Basecbs 17138 .rcmulr 17180 0gc0g 17361 -gcsg 18832 Ringcrg 20136 Unitcui 20258 Poly1cpl1 22077 coe1cco1 22078 deg1cdg1 25975 Unic1pcuc1p 26048 quot1pcq1p 26049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-subrng 20449 df-subrg 20473 df-rlreg 20597 df-lmod 20783 df-lss 20853 df-cnfld 21280 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-mdeg 25976 df-deg1 25977 df-uc1p 26053 df-q1p 26054 |
| This theorem is referenced by: q1pcl 26078 r1pdeglt 26081 r1pid2 26083 dvdsq1p 26084 q1pdir 33544 q1pvsca 33545 r1pid2OLD 33550 irredminply 33682 aks6d1c5lem3 42110 |
| Copyright terms: Public domain | W3C validator |