![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > q1peqb | Structured version Visualization version GIF version |
Description: Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
q1pval.q | ⊢ 𝑄 = (quot1p‘𝑅) |
q1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
q1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
q1pval.d | ⊢ 𝐷 = (deg1‘𝑅) |
q1pval.m | ⊢ − = (-g‘𝑃) |
q1pval.t | ⊢ · = (.r‘𝑃) |
q1peqb.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
q1peqb | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) → 𝑋 ∈ V)) |
4 | ovex 7481 | . . . 4 ⊢ (𝐹𝑄𝐺) ∈ V | |
5 | eleq1 2832 | . . . 4 ⊢ ((𝐹𝑄𝐺) = 𝑋 → ((𝐹𝑄𝐺) ∈ V ↔ 𝑋 ∈ V)) | |
6 | 4, 5 | mpbii 233 | . . 3 ⊢ ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V) |
7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) = 𝑋 → 𝑋 ∈ V)) |
8 | simpr 484 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → 𝑋 ∈ V) | |
9 | q1pval.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | q1pval.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘𝑅) | |
11 | q1pval.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑃) | |
12 | q1pval.m | . . . . . . . 8 ⊢ − = (-g‘𝑃) | |
13 | eqid 2740 | . . . . . . . 8 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
14 | q1pval.t | . . . . . . . 8 ⊢ · = (.r‘𝑃) | |
15 | simp1 1136 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑅 ∈ Ring) | |
16 | simp2 1137 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
17 | q1peqb.c | . . . . . . . . . 10 ⊢ 𝐶 = (Unic1p‘𝑅) | |
18 | 9, 11, 17 | uc1pcl 26203 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
19 | 18 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
20 | 9, 13, 17 | uc1pn0 26205 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ≠ (0g‘𝑃)) |
21 | 20 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ≠ (0g‘𝑃)) |
22 | eqid 2740 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
23 | 10, 22, 17 | uc1pldg 26208 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐶 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
24 | 23 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
25 | 9, 10, 11, 12, 13, 14, 15, 16, 19, 21, 24, 22 | ply1divalg2 26198 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) |
26 | df-reu 3389 | . . . . . . 7 ⊢ (∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
27 | 25, 26 | sylib 218 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
28 | 27 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ∃!𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
29 | eleq1 2832 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → (𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
30 | oveq1 7455 | . . . . . . . . . 10 ⊢ (𝑞 = 𝑋 → (𝑞 · 𝐺) = (𝑋 · 𝐺)) | |
31 | 30 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑞 = 𝑋 → (𝐹 − (𝑞 · 𝐺)) = (𝐹 − (𝑋 · 𝐺))) |
32 | 31 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑞 = 𝑋 → (𝐷‘(𝐹 − (𝑞 · 𝐺))) = (𝐷‘(𝐹 − (𝑋 · 𝐺)))) |
33 | 32 | breq1d 5176 | . . . . . . 7 ⊢ (𝑞 = 𝑋 → ((𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺) ↔ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺))) |
34 | 29, 33 | anbi12d 631 | . . . . . 6 ⊢ (𝑞 = 𝑋 → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
35 | 34 | adantl 481 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) ∧ 𝑞 = 𝑋) → ((𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)))) |
36 | 8, 28, 35 | iota2d 6561 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
37 | q1pval.q | . . . . . . . . 9 ⊢ 𝑄 = (quot1p‘𝑅) | |
38 | 37, 9, 11, 10, 12, 14 | q1pval 26214 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
39 | 16, 19, 38 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) |
40 | df-riota 7404 | . . . . . . 7 ⊢ (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | |
41 | 39, 40 | eqtrdi 2796 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
42 | 41 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → (𝐹𝑄𝐺) = (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺)))) |
43 | 42 | eqeq1d 2742 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝐹𝑄𝐺) = 𝑋 ↔ (℩𝑞(𝑞 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) = 𝑋)) |
44 | 36, 43 | bitr4d 282 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑋 ∈ V) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
45 | 44 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝑋 ∈ V → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))) |
46 | 3, 7, 45 | pm5.21ndd 379 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 ≠ wne 2946 ∃!wreu 3386 Vcvv 3488 class class class wbr 5166 ℩cio 6523 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 < clt 11324 Basecbs 17258 .rcmulr 17312 0gc0g 17499 -gcsg 18975 Ringcrg 20260 Unitcui 20381 Poly1cpl1 22199 coe1cco1 22200 deg1cdg1 26113 Unic1pcuc1p 26186 quot1pcq1p 26187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-lmod 20882 df-lss 20953 df-cnfld 21388 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-mdeg 26114 df-deg1 26115 df-uc1p 26191 df-q1p 26192 |
This theorem is referenced by: q1pcl 26216 r1pdeglt 26219 r1pid2 26221 dvdsq1p 26222 q1pdir 33588 q1pvsca 33589 r1pid2OLD 33594 irredminply 33707 aks6d1c5lem3 42094 |
Copyright terms: Public domain | W3C validator |