Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid Structured version   Visualization version   GIF version

Theorem ismgmid 17942
 Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
mgmidcl.e (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
Assertion
Ref Expression
ismgmid (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
Distinct variable groups:   𝑥,𝑒, +   0 ,𝑒,𝑥   𝐵,𝑒,𝑥   𝑒,𝐺,𝑥   𝑈,𝑒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑒)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 22 . . . 4 (𝑈𝐵𝑈𝐵)
2 mgmidcl.e . . . . 5 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
3 mgmidmo 17937 . . . . 5 ∃*𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
4 reu5 3341 . . . . 5 (∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ (∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ∧ ∃*𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
52, 3, 4sylanblrc 594 . . . 4 (𝜑 → ∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
6 oveq1 7158 . . . . . . 7 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
76eqeq1d 2761 . . . . . 6 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
87ovanraleqv 7175 . . . . 5 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
98riota2 7134 . . . 4 ((𝑈𝐵 ∧ ∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))
101, 5, 9syl2anr 600 . . 3 ((𝜑𝑈𝐵) → (∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))
1110pm5.32da 583 . 2 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ (𝑈𝐵 ∧ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)))
12 riotacl 7126 . . . . 5 (∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵)
135, 12syl 17 . . . 4 (𝜑 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵)
14 eleq1 2840 . . . 4 ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵𝑈𝐵))
1513, 14syl5ibcom 248 . . 3 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈𝑈𝐵))
1615pm4.71rd 567 . 2 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ (𝑈𝐵 ∧ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)))
17 df-riota 7109 . . . . 5 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
18 ismgmid.b . . . . . 6 𝐵 = (Base‘𝐺)
19 ismgmid.p . . . . . 6 + = (+g𝐺)
20 ismgmid.o . . . . . 6 0 = (0g𝐺)
2118, 19, 20grpidval 17938 . . . . 5 0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
2217, 21eqtr4i 2785 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 0
2322eqeq1i 2764 . . 3 ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈0 = 𝑈)
2423a1i 11 . 2 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈0 = 𝑈))
2511, 16, 243bitr2d 311 1 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072  ∃!wreu 3073  ∃*wrmo 3074  ℩cio 6293  ‘cfv 6336  ℩crio 7108  (class class class)co 7151  Basecbs 16542  +gcplusg 16624  0gc0g 16772 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-riota 7109  df-ov 7154  df-0g 16774 This theorem is referenced by:  mgmidcl  17943  mgmlrid  17944  ismgmid2  17945  mgmidsssn0  17949  prds0g  18012  issrgid  19342  isringid  19395  signsw0g  32055
 Copyright terms: Public domain W3C validator