Proof of Theorem ismgmid
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . 4
⊢ (𝑈 ∈ 𝐵 → 𝑈 ∈ 𝐵) |
2 | | mgmidcl.e |
. . . . 5
⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
3 | | mgmidmo 17937 |
. . . . 5
⊢
∃*𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) |
4 | | reu5 3341 |
. . . . 5
⊢
(∃!𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ (∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ∧ ∃*𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
5 | 2, 3, 4 | sylanblrc 594 |
. . . 4
⊢ (𝜑 → ∃!𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
6 | | oveq1 7158 |
. . . . . . 7
⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) |
7 | 6 | eqeq1d 2761 |
. . . . . 6
⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
8 | 7 | ovanraleqv 7175 |
. . . . 5
⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
9 | 8 | riota2 7134 |
. . . 4
⊢ ((𝑈 ∈ 𝐵 ∧ ∃!𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)) |
10 | 1, 5, 9 | syl2anr 600 |
. . 3
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)) |
11 | 10 | pm5.32da 583 |
. 2
⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ (𝑈 ∈ 𝐵 ∧ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))) |
12 | | riotacl 7126 |
. . . . 5
⊢
(∃!𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵) |
13 | 5, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵) |
14 | | eleq1 2840 |
. . . 4
⊢
((℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵 ↔ 𝑈 ∈ 𝐵)) |
15 | 13, 14 | syl5ibcom 248 |
. . 3
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → 𝑈 ∈ 𝐵)) |
16 | 15 | pm4.71rd 567 |
. 2
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ (𝑈 ∈ 𝐵 ∧ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))) |
17 | | df-riota 7109 |
. . . . 5
⊢
(℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
18 | | ismgmid.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
19 | | ismgmid.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
20 | | ismgmid.o |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
21 | 18, 19, 20 | grpidval 17938 |
. . . . 5
⊢ 0 =
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
22 | 17, 21 | eqtr4i 2785 |
. . . 4
⊢
(℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 0 |
23 | 22 | eqeq1i 2764 |
. . 3
⊢
((℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ 0 = 𝑈) |
24 | 23 | a1i 11 |
. 2
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ 0 = 𝑈)) |
25 | 11, 16, 24 | 3bitr2d 311 |
1
⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |