Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version |
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7232 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfiota1 6393 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 Ⅎwnfc 2887 ℩cio 6389 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: riotaprop 7260 riotass2 7263 riotass 7264 riotaxfrd 7267 ttrcltr 9474 lble 11927 riotaneg 11954 zriotaneg 12435 nosupbnd1 33917 nosupbnd2 33919 noinfbnd1 33932 noinfbnd2 33934 poimirlem26 35803 riotaocN 37223 ltrniotaval 38595 cdlemksv2 38861 cdlemkuv2 38881 cdlemk36 38927 disjinfi 42731 |
Copyright terms: Public domain | W3C validator |