| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version | ||
| Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7326 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfiota1 6454 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ℩cio 6450 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-sn 4586 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: riotaprop 7353 riotass2 7356 riotass 7357 riotaxfrd 7360 ttrcltr 9647 lble 12113 riotaneg 12140 zriotaneg 12625 nosupbnd1 27660 nosupbnd2 27662 noinfbnd1 27675 noinfbnd2 27677 poimirlem26 37634 riotaocN 39196 ltrniotaval 40569 cdlemksv2 40835 cdlemkuv2 40855 cdlemk36 40901 disjinfi 45180 |
| Copyright terms: Public domain | W3C validator |