MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7411
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7404 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6527 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2906 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2893  cio 6523  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-sn 4649  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  riotaprop  7432  riotass2  7435  riotass  7436  riotaxfrd  7439  ttrcltr  9785  lble  12247  riotaneg  12274  zriotaneg  12756  nosupbnd1  27777  nosupbnd2  27779  noinfbnd1  27792  noinfbnd2  27794  poimirlem26  37606  riotaocN  39165  ltrniotaval  40538  cdlemksv2  40804  cdlemkuv2  40824  cdlemk36  40870  disjinfi  45099
  Copyright terms: Public domain W3C validator