| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version | ||
| Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7362 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfiota1 6486 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2883 ℩cio 6482 ℩crio 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-sn 4602 df-uni 4884 df-iota 6484 df-riota 7362 |
| This theorem is referenced by: riotaprop 7389 riotass2 7392 riotass 7393 riotaxfrd 7396 ttrcltr 9730 lble 12194 riotaneg 12221 zriotaneg 12706 nosupbnd1 27678 nosupbnd2 27680 noinfbnd1 27693 noinfbnd2 27695 poimirlem26 37670 riotaocN 39227 ltrniotaval 40600 cdlemksv2 40866 cdlemkuv2 40886 cdlemk36 40932 disjinfi 45216 |
| Copyright terms: Public domain | W3C validator |