MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7219
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7212 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6378 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2904 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2886  cio 6374  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376  df-riota 7212
This theorem is referenced by:  riotaprop  7240  riotass2  7243  riotass  7244  riotaxfrd  7247  lble  11857  riotaneg  11884  zriotaneg  12364  ttrcltr  33702  nosupbnd1  33844  nosupbnd2  33846  noinfbnd1  33859  noinfbnd2  33861  poimirlem26  35730  riotaocN  37150  ltrniotaval  38522  cdlemksv2  38788  cdlemkuv2  38808  cdlemk36  38854  disjinfi  42620
  Copyright terms: Public domain W3C validator