MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7310
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7303 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6439 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2892 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  wnfc 2879  cio 6435  crio 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-sn 4574  df-uni 4857  df-iota 6437  df-riota 7303
This theorem is referenced by:  riotaprop  7330  riotass2  7333  riotass  7334  riotaxfrd  7337  ttrcltr  9606  lble  12074  riotaneg  12101  zriotaneg  12586  nosupbnd1  27653  nosupbnd2  27655  noinfbnd1  27668  noinfbnd2  27670  poimirlem26  37685  riotaocN  39307  ltrniotaval  40679  cdlemksv2  40945  cdlemkuv2  40965  cdlemk36  41011  disjinfi  45288
  Copyright terms: Public domain W3C validator