| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version | ||
| Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7303 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfiota1 6439 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 Ⅎwnfc 2879 ℩cio 6435 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-sn 4574 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: riotaprop 7330 riotass2 7333 riotass 7334 riotaxfrd 7337 ttrcltr 9606 lble 12074 riotaneg 12101 zriotaneg 12586 nosupbnd1 27653 nosupbnd2 27655 noinfbnd1 27668 noinfbnd2 27670 poimirlem26 37685 riotaocN 39307 ltrniotaval 40679 cdlemksv2 40945 cdlemkuv2 40965 cdlemk36 41011 disjinfi 45288 |
| Copyright terms: Public domain | W3C validator |