MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7354
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7347 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6469 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2890 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2877  cio 6465  crio 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3934  df-sn 4593  df-uni 4875  df-iota 6467  df-riota 7347
This theorem is referenced by:  riotaprop  7374  riotass2  7377  riotass  7378  riotaxfrd  7381  ttrcltr  9676  lble  12142  riotaneg  12169  zriotaneg  12654  nosupbnd1  27633  nosupbnd2  27635  noinfbnd1  27648  noinfbnd2  27650  poimirlem26  37647  riotaocN  39209  ltrniotaval  40582  cdlemksv2  40848  cdlemkuv2  40868  cdlemk36  40914  disjinfi  45193
  Copyright terms: Public domain W3C validator