![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version |
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 6837 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfiota1 6064 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | nfcxfr 2937 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∈ wcel 2157 Ⅎwnfc 2926 ℩cio 6060 ℩crio 6836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-sn 4367 df-uni 4627 df-iota 6062 df-riota 6837 |
This theorem is referenced by: riotaprop 6861 riotass2 6864 riotass 6865 riotaxfrd 6868 lble 11265 riotaneg 11292 zriotaneg 11777 nosupbnd1 32364 nosupbnd2 32366 poimirlem26 33915 riotaocN 35221 ltrniotaval 36593 cdlemksv2 36859 cdlemkuv2 36879 cdlemk36 36925 wessf1ornlem 40112 disjinfi 40121 |
Copyright terms: Public domain | W3C validator |