![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version |
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfiota1 6496 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | nfcxfr 2899 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2104 Ⅎwnfc 2881 ℩cio 6492 ℩crio 7366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-sn 4628 df-uni 4908 df-iota 6494 df-riota 7367 |
This theorem is referenced by: riotaprop 7395 riotass2 7398 riotass 7399 riotaxfrd 7402 ttrcltr 9713 lble 12170 riotaneg 12197 zriotaneg 12679 nosupbnd1 27453 nosupbnd2 27455 noinfbnd1 27468 noinfbnd2 27470 poimirlem26 36817 riotaocN 38382 ltrniotaval 39755 cdlemksv2 40021 cdlemkuv2 40041 cdlemk36 40087 disjinfi 44189 |
Copyright terms: Public domain | W3C validator |