MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7239
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7232 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6393 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2905 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wnfc 2887  cio 6389  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-sn 4562  df-uni 4840  df-iota 6391  df-riota 7232
This theorem is referenced by:  riotaprop  7260  riotass2  7263  riotass  7264  riotaxfrd  7267  ttrcltr  9474  lble  11927  riotaneg  11954  zriotaneg  12435  nosupbnd1  33917  nosupbnd2  33919  noinfbnd1  33932  noinfbnd2  33934  poimirlem26  35803  riotaocN  37223  ltrniotaval  38595  cdlemksv2  38861  cdlemkuv2  38881  cdlemk36  38927  disjinfi  42731
  Copyright terms: Public domain W3C validator