| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version | ||
| Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7344 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfiota1 6466 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 1, 2 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ℩cio 6462 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-sn 4590 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: riotaprop 7371 riotass2 7374 riotass 7375 riotaxfrd 7378 ttrcltr 9669 lble 12135 riotaneg 12162 zriotaneg 12647 nosupbnd1 27626 nosupbnd2 27628 noinfbnd1 27641 noinfbnd2 27643 poimirlem26 37640 riotaocN 39202 ltrniotaval 40575 cdlemksv2 40841 cdlemkuv2 40861 cdlemk36 40907 disjinfi 45186 |
| Copyright terms: Public domain | W3C validator |