MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota1 Structured version   Visualization version   GIF version

Theorem nfriota1 7313
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfriota1 𝑥(𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfriota1
StepHypRef Expression
1 df-riota 7306 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
2 nfiota1 6440 . 2 𝑥(℩𝑥(𝑥𝐴𝜑))
31, 2nfcxfr 2889 1 𝑥(𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  cio 6436  crio 7305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3438  df-ss 3920  df-sn 4578  df-uni 4859  df-iota 6438  df-riota 7306
This theorem is referenced by:  riotaprop  7333  riotass2  7336  riotass  7337  riotaxfrd  7340  ttrcltr  9612  lble  12077  riotaneg  12104  zriotaneg  12589  nosupbnd1  27624  nosupbnd2  27626  noinfbnd1  27639  noinfbnd2  27641  poimirlem26  37646  riotaocN  39208  ltrniotaval  40580  cdlemksv2  40846  cdlemkuv2  40866  cdlemk36  40912  disjinfi  45190
  Copyright terms: Public domain W3C validator