Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfriota1 | Structured version Visualization version GIF version |
Description: The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfriota1 | ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7109 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfiota1 6297 | . 2 ⊢ Ⅎ𝑥(℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | nfcxfr 2918 | 1 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 ∈ wcel 2112 Ⅎwnfc 2900 ℩cio 6293 ℩crio 7108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-in 3866 df-ss 3876 df-sn 4524 df-uni 4800 df-iota 6295 df-riota 7109 |
This theorem is referenced by: riotaprop 7136 riotass2 7139 riotass 7140 riotaxfrd 7143 lble 11630 riotaneg 11657 zriotaneg 12136 nosupbnd1 33483 nosupbnd2 33485 noinfbnd1 33498 noinfbnd2 33500 poimirlem26 35364 riotaocN 36786 ltrniotaval 38158 cdlemksv2 38424 cdlemkuv2 38444 cdlemk36 38490 disjinfi 42191 |
Copyright terms: Public domain | W3C validator |