| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota1 | Structured version Visualization version GIF version | ||
| Description: Property of restricted iota. Compare iota1 6491. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota1 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 3357 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | iota1 6491 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
| 4 | df-riota 7347 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 4 | eqeq1i 2735 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥) |
| 6 | 3, 5 | bitr4di 289 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 ∃!wreu 3354 ℩cio 6465 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-reu 3357 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: nosupbnd1 27633 nosupbnd2 27635 noinfbnd1 27648 noinfbnd2 27650 wessf1ornlem 45186 disjinfi 45193 |
| Copyright terms: Public domain | W3C validator |