![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota1 | Structured version Visualization version GIF version |
Description: Property of restricted iota. Compare iota1 6540. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota1 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3379 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iota1 6540 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | |
3 | 1, 2 | sylbi 217 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
4 | df-riota 7388 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | eqeq1i 2740 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥) |
6 | 3, 5 | bitr4di 289 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃!weu 2566 ∃!wreu 3376 ℩cio 6514 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-reu 3379 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: nosupbnd1 27774 nosupbnd2 27776 noinfbnd1 27789 noinfbnd2 27791 wessf1ornlem 45128 disjinfi 45135 |
Copyright terms: Public domain | W3C validator |