MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Structured version   Visualization version   GIF version

Theorem riota1 7409
Description: Property of restricted iota. Compare iota1 6540. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 3379 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iota1 6540 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
31, 2sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
4 df-riota 7388 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
54eqeq1i 2740 . 2 ((𝑥𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥)
63, 5bitr4di 289 1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃!weu 2566  ∃!wreu 3376  cio 6514  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-reu 3379  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516  df-riota 7388
This theorem is referenced by:  nosupbnd1  27774  nosupbnd2  27776  noinfbnd1  27789  noinfbnd2  27791  wessf1ornlem  45128  disjinfi  45135
  Copyright terms: Public domain W3C validator