![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota1 | Structured version Visualization version GIF version |
Description: Property of restricted iota. Compare iota1 6474. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota1 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3355 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iota1 6474 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
4 | df-riota 7314 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 4 | eqeq1i 2742 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥) |
6 | 3, 5 | bitr4di 289 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2567 ∃!wreu 3352 ℩cio 6447 ℩crio 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-reu 3355 df-v 3448 df-un 3916 df-in 3918 df-ss 3928 df-sn 4588 df-pr 4590 df-uni 4867 df-iota 6449 df-riota 7314 |
This theorem is referenced by: nosupbnd1 27065 nosupbnd2 27067 noinfbnd1 27080 noinfbnd2 27082 wessf1ornlem 43410 disjinfi 43419 |
Copyright terms: Public domain | W3C validator |