MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Structured version   Visualization version   GIF version

Theorem riota1 7192
Description: Property of restricted iota. Compare iota1 6357. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 3068 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iota1 6357 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
31, 2sylbi 220 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
4 df-riota 7170 . . 3 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
54eqeq1i 2742 . 2 ((𝑥𝐴 𝜑) = 𝑥 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥)
63, 5bitr4di 292 1 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (𝑥𝐴 𝜑) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  ∃!weu 2567  ∃!wreu 3063  cio 6336  crio 7169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-reu 3068  df-v 3410  df-un 3871  df-in 3873  df-ss 3883  df-sn 4542  df-pr 4544  df-uni 4820  df-iota 6338  df-riota 7170
This theorem is referenced by:  nosupbnd1  33654  nosupbnd2  33656  noinfbnd1  33669  noinfbnd2  33671  wessf1ornlem  42395  disjinfi  42404
  Copyright terms: Public domain W3C validator