![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5598 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3059 class class class wbr 5148 Po wpo 5595 Or wor 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-so 5598 |
This theorem is referenced by: sonr 5621 sotr 5622 so2nr 5624 so3nr 5625 soltmin 6159 predso 6347 tz6.26 6370 wfi 6373 wfisg 6376 wfis2fg 6379 soxp 8153 soseq 8183 wfrfun 8371 wfrresex 8372 wfr2a 8373 wfr1 8374 on2recsfn 8704 on2recsov 8705 on2ind 8706 on3ind 8707 fimax2g 9320 wofi 9323 fimin2g 9535 ordtypelem8 9563 wemaplem2 9585 wemapsolem 9588 cantnf 9731 fin23lem27 10366 iccpnfhmeo 24990 xrhmeo 24991 logccv 26720 ex-po 30464 xrge0iifiso 33896 weiunso 36449 incsequz2 37736 epirron 43243 oneptr 43244 prproropf1olem1 47428 |
Copyright terms: Public domain | W3C validator |