![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5608 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 ∀wral 3067 class class class wbr 5166 Po wpo 5605 Or wor 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-so 5608 |
This theorem is referenced by: sonr 5632 sotr 5633 so2nr 5635 so3nr 5636 soltmin 6168 predso 6356 tz6.26 6379 wfi 6382 wfisg 6385 wfis2fg 6388 soxp 8170 soseq 8200 wfrfun 8388 wfrresex 8389 wfr2a 8390 wfr1 8391 on2recsfn 8723 on2recsov 8724 on2ind 8725 on3ind 8726 fimax2g 9350 wofi 9353 fimin2g 9566 ordtypelem8 9594 wemaplem2 9616 wemapsolem 9619 cantnf 9762 fin23lem27 10397 iccpnfhmeo 24995 xrhmeo 24996 logccv 26723 ex-po 30467 xrge0iifiso 33881 weiunso 36432 incsequz2 37709 epirron 43215 oneptr 43216 prproropf1olem1 47377 |
Copyright terms: Public domain | W3C validator |