| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5540 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3044 class class class wbr 5102 Po wpo 5537 Or wor 5538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-so 5540 |
| This theorem is referenced by: sonr 5563 sotr 5564 so2nr 5567 so3nr 5568 soltmin 6097 predso 6285 tz6.26 6308 wfi 6310 wfisg 6312 wfis2fg 6314 soxp 8085 soseq 8115 wfrfun 8279 wfrresex 8280 wfr2a 8281 wfr1 8282 on2recsfn 8608 on2recsov 8609 on2ind 8610 on3ind 8611 fimax2g 9209 wofi 9212 fimin2g 9426 ordtypelem8 9454 wemaplem2 9476 wemapsolem 9479 cantnf 9622 fin23lem27 10257 iccpnfhmeo 24819 xrhmeo 24820 logccv 26548 ex-po 30337 xrge0iifiso 33898 weiunso 36427 incsequz2 37716 epirron 43216 oneptr 43217 prproropf1olem1 47477 |
| Copyright terms: Public domain | W3C validator |