![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5591 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 ∀wral 3058 class class class wbr 5148 Po wpo 5588 Or wor 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-so 5591 |
This theorem is referenced by: sonr 5613 sotr 5614 so2nr 5616 so3nr 5617 soltmin 6142 predso 6330 tz6.26 6353 wfi 6356 wfisg 6359 wfis2fg 6362 soxp 8134 soseq 8164 wfrfun 8353 wfrresex 8354 wfr2a 8355 wfr1 8356 on2recsfn 8688 on2recsov 8689 on2ind 8690 on3ind 8691 fimax2g 9314 wofi 9317 fimin2g 9521 ordtypelem8 9549 wemaplem2 9571 wemapsolem 9574 cantnf 9717 fin23lem27 10352 iccpnfhmeo 24883 xrhmeo 24884 logccv 26610 ex-po 30258 xrge0iifiso 33536 incsequz2 37222 epirron 42682 oneptr 42683 prproropf1olem1 46843 |
Copyright terms: Public domain | W3C validator |