| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5523 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3047 class class class wbr 5089 Po wpo 5520 Or wor 5521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-so 5523 |
| This theorem is referenced by: sonr 5546 sotr 5547 so2nr 5550 so3nr 5551 soltmin 6082 predso 6271 tz6.26 6294 wfi 6296 wfisg 6298 wfis2fg 6300 soxp 8059 soseq 8089 wfrfun 8253 wfrresex 8254 wfr2a 8255 wfr1 8256 on2recsfn 8582 on2recsov 8583 on2ind 8584 on3ind 8585 fimax2g 9170 wofi 9173 fimin2g 9383 ordtypelem8 9411 wemaplem2 9433 wemapsolem 9436 cantnf 9583 fin23lem27 10219 iccpnfhmeo 24870 xrhmeo 24871 logccv 26599 ex-po 30415 xrge0iifiso 33948 weiunso 36510 incsequz2 37799 epirron 43357 oneptr 43358 chnsuslle 46989 prproropf1olem1 47613 |
| Copyright terms: Public domain | W3C validator |