Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5505 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3065 class class class wbr 5075 Po wpo 5502 Or wor 5503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-so 5505 |
This theorem is referenced by: sonr 5527 sotr 5528 so2nr 5530 so3nr 5531 soltmin 6046 predso 6231 tz6.26 6254 wfi 6257 wfisg 6260 wfis2fg 6263 soxp 7979 wfrfun 8172 wfrresex 8173 wfr2a 8174 wfr1 8175 fimax2g 9069 wofi 9072 fimin2g 9265 ordtypelem8 9293 wemaplem2 9315 wemapsolem 9318 cantnf 9460 fin23lem27 10093 iccpnfhmeo 24117 xrhmeo 24118 logccv 25827 ex-po 28808 xrge0iifiso 31894 soseq 33812 on2recsfn 33835 on2recsov 33836 on2ind 33837 on3ind 33838 incsequz2 35916 prproropf1olem1 44966 |
Copyright terms: Public domain | W3C validator |