| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5550 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3045 class class class wbr 5110 Po wpo 5547 Or wor 5548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-so 5550 |
| This theorem is referenced by: sonr 5573 sotr 5574 so2nr 5577 so3nr 5578 soltmin 6112 predso 6300 tz6.26 6323 wfi 6325 wfisg 6327 wfis2fg 6329 soxp 8111 soseq 8141 wfrfun 8305 wfrresex 8306 wfr2a 8307 wfr1 8308 on2recsfn 8634 on2recsov 8635 on2ind 8636 on3ind 8637 fimax2g 9240 wofi 9243 fimin2g 9457 ordtypelem8 9485 wemaplem2 9507 wemapsolem 9510 cantnf 9653 fin23lem27 10288 iccpnfhmeo 24850 xrhmeo 24851 logccv 26579 ex-po 30371 xrge0iifiso 33932 weiunso 36461 incsequz2 37750 epirron 43250 oneptr 43251 prproropf1olem1 47508 |
| Copyright terms: Public domain | W3C validator |