| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5562 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3051 class class class wbr 5119 Po wpo 5559 Or wor 5560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-so 5562 |
| This theorem is referenced by: sonr 5585 sotr 5586 so2nr 5589 so3nr 5590 soltmin 6125 predso 6313 tz6.26 6336 wfi 6339 wfisg 6342 wfis2fg 6345 soxp 8128 soseq 8158 wfrfun 8346 wfrresex 8347 wfr2a 8348 wfr1 8349 on2recsfn 8679 on2recsov 8680 on2ind 8681 on3ind 8682 fimax2g 9294 wofi 9297 fimin2g 9511 ordtypelem8 9539 wemaplem2 9561 wemapsolem 9564 cantnf 9707 fin23lem27 10342 iccpnfhmeo 24894 xrhmeo 24895 logccv 26624 ex-po 30416 xrge0iifiso 33966 weiunso 36484 incsequz2 37773 epirron 43278 oneptr 43279 prproropf1olem1 47517 |
| Copyright terms: Public domain | W3C validator |