| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version | ||
| Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
| Ref | Expression |
|---|---|
| sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-so 5547 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∀wral 3044 class class class wbr 5107 Po wpo 5544 Or wor 5545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-so 5547 |
| This theorem is referenced by: sonr 5570 sotr 5571 so2nr 5574 so3nr 5575 soltmin 6109 predso 6297 tz6.26 6320 wfi 6322 wfisg 6324 wfis2fg 6326 soxp 8108 soseq 8138 wfrfun 8302 wfrresex 8303 wfr2a 8304 wfr1 8305 on2recsfn 8631 on2recsov 8632 on2ind 8633 on3ind 8634 fimax2g 9233 wofi 9236 fimin2g 9450 ordtypelem8 9478 wemaplem2 9500 wemapsolem 9503 cantnf 9646 fin23lem27 10281 iccpnfhmeo 24843 xrhmeo 24844 logccv 26572 ex-po 30364 xrge0iifiso 33925 weiunso 36454 incsequz2 37743 epirron 43243 oneptr 43244 prproropf1olem1 47504 |
| Copyright terms: Public domain | W3C validator |