Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sopo | Structured version Visualization version GIF version |
Description: A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.) |
Ref | Expression |
---|---|
sopo | ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-so 5495 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 ∀wral 3063 class class class wbr 5070 Po wpo 5492 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-so 5495 |
This theorem is referenced by: sonr 5517 sotr 5518 so2nr 5520 so3nr 5521 soltmin 6030 predso 6216 tz6.26 6235 wfi 6238 wfisg 6241 wfis2fg 6244 soxp 7941 wfrfun 8134 wfrresex 8135 wfr2a 8136 wfr1 8137 fimax2g 8990 wofi 8993 fimin2g 9186 ordtypelem8 9214 wemaplem2 9236 wemapsolem 9239 cantnf 9381 fin23lem27 10015 iccpnfhmeo 24014 xrhmeo 24015 logccv 25723 ex-po 28700 xrge0iifiso 31787 soseq 33730 on2recsfn 33753 on2recsov 33754 on2ind 33755 on3ind 33756 incsequz2 35834 prproropf1olem1 44843 |
Copyright terms: Public domain | W3C validator |