MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soinxp Structured version   Visualization version   GIF version

Theorem soinxp 5758
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 5757 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 5755 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
3 biidd 262 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦𝑥 = 𝑦))
4 brinxp 5755 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 460 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
62, 3, 53orbi123d 1436 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76ralbidva 3176 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
87ralbiia 3092 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
91, 8anbi12i 628 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
10 df-so 5590 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5590 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
129, 10, 113bitr4i 303 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3o 1087  wcel 2107  wral 3062  cin 3948   class class class wbr 5149   Po wpo 5587   Or wor 5588   × cxp 5675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-po 5589  df-so 5590  df-xp 5683
This theorem is referenced by:  weinxp  5761  ltsopi  10883  cnso  16190  opsrtoslem2  21617
  Copyright terms: Public domain W3C validator