MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soinxp Structured version   Visualization version   GIF version

Theorem soinxp 5723
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 5722 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 5720 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
3 biidd 262 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦𝑥 = 𝑦))
4 brinxp 5720 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 458 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
62, 3, 53orbi123d 1437 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76ralbidva 3155 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
87ralbiia 3074 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
91, 8anbi12i 628 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
10 df-so 5550 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5550 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
129, 10, 113bitr4i 303 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1085  wcel 2109  wral 3045  cin 3916   class class class wbr 5110   Po wpo 5547   Or wor 5548   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-po 5549  df-so 5550  df-xp 5647
This theorem is referenced by:  weinxp  5726  ltsopi  10848  cnso  16222  opsrtoslem2  21970
  Copyright terms: Public domain W3C validator