| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > soinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
| Ref | Expression |
|---|---|
| soinxp | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poinxp 5697 | . . 3 ⊢ (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴) | |
| 2 | brinxp 5695 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) | |
| 3 | biidd 262 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 4 | brinxp 5695 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | |
| 5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 6 | 2, 3, 5 | 3orbi123d 1437 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))) |
| 7 | 6 | ralbidva 3153 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))) |
| 8 | 7 | ralbiia 3076 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 9 | 1, 8 | anbi12i 628 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))) |
| 10 | df-so 5525 | . 2 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
| 11 | df-so 5525 | . 2 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))) | |
| 12 | 9, 10, 11 | 3bitr4i 303 | 1 ⊢ (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 class class class wbr 5091 Po wpo 5522 Or wor 5523 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-po 5524 df-so 5525 df-xp 5622 |
| This theorem is referenced by: weinxp 5701 ltsopi 10776 cnso 16153 opsrtoslem2 21989 |
| Copyright terms: Public domain | W3C validator |