MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soinxp Structured version   Visualization version   GIF version

Theorem soinxp 5606
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 5605 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 5603 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
3 biidd 265 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦𝑥 = 𝑦))
4 brinxp 5603 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 462 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
62, 3, 53orbi123d 1432 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76ralbidva 3184 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
87ralbiia 3152 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
91, 8anbi12i 629 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
10 df-so 5448 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5448 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
129, 10, 113bitr4i 306 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3o 1083  wcel 2115  wral 3126  cin 3909   class class class wbr 5039   Po wpo 5445   Or wor 5446   × cxp 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-po 5447  df-so 5448  df-xp 5534
This theorem is referenced by:  weinxp  5609  ltsopi  10287  cnso  15579  opsrtoslem2  20240
  Copyright terms: Public domain W3C validator