MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soinxp Structured version   Visualization version   GIF version

Theorem soinxp 5663
Description: Intersection of total order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
soinxp (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)

Proof of Theorem soinxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poinxp 5662 . . 3 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
2 brinxp 5660 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
3 biidd 261 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦𝑥 = 𝑦))
4 brinxp 5660 . . . . . . 7 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 459 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
62, 3, 53orbi123d 1434 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76ralbidva 3120 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
87ralbiia 3090 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
91, 8anbi12i 627 . 2 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
10 df-so 5499 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
11 df-so 5499 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴 ↔ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥 = 𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
129, 10, 113bitr4i 303 1 (𝑅 Or 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Or 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3o 1085  wcel 2106  wral 3064  cin 3885   class class class wbr 5073   Po wpo 5496   Or wor 5497   × cxp 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-opab 5136  df-po 5498  df-so 5499  df-xp 5590
This theorem is referenced by:  weinxp  5666  ltsopi  10654  cnso  15966  opsrtoslem2  21273
  Copyright terms: Public domain W3C validator